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Abstract

Over the past several decades, econometrics research has devoted substantial efforts to im-

proving the credibility of standard errors. This paper studies how such improvements in-

teract with the selective publication process to affect the credibility of published studies. I

show that adopting improved but enlarged standard errors in individual studies can inadver-

tently lead to higher bias in the studies selected for publication. Intuitively, this is because

increasing standard errors raises the bar on statistical significance, which exacerbates pub-

lication bias. Despite the possibility of higher bias, I show that the coverage of published

confidence intervals unambiguously increases. I illustrate these phenomena using a newly

constructed dataset on the adoption of clustered standard errors in difference-in-differences

studies published between 2000 and 2009. Clustering is associated with a near doubling

in the magnitude of effect sizes. I estimate a model of the publication process and find

that clustering led to large improvements in coverage but also sizable increases in bias. To

examine the overall impact on evidence-based policy, I develop a model of a policymaker

who uses information from published studies to inform policy decisions and overestimates

the precision of estimates when standard errors are unclustered. I find that clustering low-

ers minimax regret when policymakers exhibit sufficiently high loss aversion for mistakenly

implementing an ineffective or harmful policy.
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1. Introduction

Over the past several decades, econometrics research has devoted substantial efforts to im-

proving the accuracy of estimated standard errors in a wide variety of settings (White, 1980;

Moulton, 1986; Newey and West, 1987; Staiger and Stock, 1997; Calonico et al., 2014). In

practice, these improvements often lead to larger standard errors that increase the coverage

of reported confidence intervals for a given study. However, larger standard errors also make

statistical significance more difficult to obtain, and insignificant results are frequently censored

in the publication process (Franco et al., 2014; Brodeur et al., 2016; Andrews and Kasy, 2019).

Thus, the studies that are ultimately selected for publication may depend critically on how

standard errors are calculated. This in turn can affect the statistical credibility of published

research in unanticipated ways.

While much research has been devoted to the separate domains of standard error corrections

and publication bias, comparatively little attention has been given to the close connection

between them. This paper studies how their interaction can have important implications for

bias and coverage in published research. A key insight is that increasing reported standard

errors effectively raises the bar for statistical significance, which can exacerbate publication bias.

Moreover, higher bias pushes toward undercoverage. This raises several questions. Do more

robust inference methods actually meet their primary aim of improving coverage conditional

on publication? Is it always the case that standard error corrections amplify the effects of

publication bias? I develop a theoretical framework to answer these questions, and then quantify

the empirical importance of these issues in the difference-in-differences (DiD) literature in the

2000’s, when clustering was growing in popularity.

I begin by extending the selective publication model in Andrews and Kasy (2019) to incor-

porate the possibility that reported standard errors are mismeasured. In the model, researchers

estimate a treatment effect of interest, for example, the average treatment effect of a policy

intervention. Publication of the study, however, may depend on the reported statistical signifi-

cance of its main findings, either because journals prefer publishing significant results or because

researchers do not write up null results in anticipation of low chances of publication. In contrast

to the standard model, I consider the case where reported standard errors – and hence p-values

– may be downward biased. This could occur, for example, from failing to appropriately cluster

standard errors.1 This makes it easier to obtain statistical significance, which can increase the

probability of publication. The model applies to clustered standard errors, which is the empir-

ical setting I analyze, but also more generally to any corrections that tend to enlarge reported

1In the baseline model, I consider what happens when the choice to cluster is unrelated to statistical
significance, and explore endogeneity arising from ‘strategic clustering’ in extensions.
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standard errors e.g. heteroscedasticity-robust standard errors, heteroscedasticity and autocor-

relation consistent standard errors, corrections for weak instruments, or robust standard errors

in regression-discontinuity designs.

Using this framework, I show that average bias in published studies can either increase or

decrease following standard error corrections, but that increases are inevitable when corrections

are sufficiently large. Moreover, I show that analogous results hold for changes in true and

estimated treatment effects. Intuitively, in an ‘unclustered regime’ where standard errors are

severely downward biased, a relatively high share of estimates will be reported as statistically

significant (often erroneously). This means that relatively few studies are censored by selective

publication, leading to little bias in published studies. By contrast, in a ‘clustered regime’ where

standard errors are correctly measured, and hence larger, a greater share of estimates will be

insignificant and censored through the publication process, resulting in higher bias (Ioannidis,

2008; Andrews and Kasy, 2019; Frankel and Kasy, 2022). The case of large corrections is

empirically relevant because uncorrected standard errors have been shown in many instances

to be severely downward biased.2 Nonetheless, with small corrections, it is in principle possible

for bias to decrease, which is explored in greater detail in Subsection 2.2.

Despite the possibility of higher bias, I show that standard error corrections unambiguously

increase average coverage in published confidence intervals. This holds under surprisingly gen-

eral conditions. In particular, it holds for any degree of selective publication against null results,

any sized correction, and for arbitrary distributions of true treatment effects. In practical terms,

this means that we can extend the common intuition that standard error corrections increase

coverage in individual studies to the more realistic case where publication favors statistical

significance.

Overall, the theoretical results highlight a striking tension: in the presence of publication

bias, standard error corrections enhance the credibility of published confidence intervals, but

can also inadvertently deteriorate the credibility of published point estimates. This conclusion

applies to all forms of standard error corrections that enlarge confidence intervals. Moreover,

similar dynamics may also be present in the adoption of other econometric methods which can

generate larger standard errors. For example, newly proposed DiD estimators under staggered

treatment timing and heterogeneous treatment effects typically restrict sample sizes to permit

only ‘clean’ comparisons (Callaway and Sant’Anna, 2021; Borusyak et al., 2024). It is important

to emphasize that this paper does not recommend against implementing more robust methods

for estimation and inference. Instead, it uncovers an underappreciated cost of publication bias

and aims to quantify its impact.

2For example, Abadie et al. (2023) find using US Census Data that standard errors clustered at the state
level are more than 20 times larger than robust standard errors.
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I turn next to studying these issues empirically, using a new dataset constructed from

DiD studies published between 2000–2009. Over this period, clustered standard errors to

account for serial correlation became common practice, in part because of an influential study by

Bertrand et al. (2004) that demonstrated their practical importance, and despite earlier studies

in the econometrics literature emphasizing the importance of accounting for correlation in errors

within groups (e.g. Moulton (1986)). My data are drawn from the same six economics journals

analyzed in Bertrand et al. (2004), but for a later period.3 The DiD studies in the sample

consist primarily of policy evaluations (e.g. health care, tax, education). This is a compelling

setting for applying the theoretical results for two reasons. First, DiD is an extremely popular

research design in the quantitative social sciences. In economics, it is the most widely referenced

quasi-experimental method and its popularity has increased dramatically over time (Currie et

al., 2020). Second, failing to cluster frequently results in large downward bias in standard

errors, which can lead to exaggerated statistical support for the effectiveness of an intervention

(Moulton, 1986, 1990; Bertrand et al., 2004).

Descriptive statistics reveal two striking patterns that are consistent with clustering in-

teracting with publication bias to change the distribution of published estimates. First, the

adoption of clustered standard errors in the empirical DiD literature over the 2000’s was as-

sociated with a near doubling in the magnitude of estimated treatment effects. This large

gap remains even after controlling for differences in research topics, sample size, and including

year and journal fixed effects. Second, the data exhibit strong evidence for publication bias

favoring statistical significance. Following the metaregression approach in Card and Krueger

(1995), I find, for both unclustered and clustered studies, a strong positive association between

standard errors and effect sizes, such that the majority of published studies report statistically

significant results. Following Brodeur et al. (2016), I also plot the distributions of test statis-

tics for unclustered and clustered studies. Both distributions are strikingly similar and show

substantial bunching around the 5% significance threshold, which is suggestive of publication

bias and p-hacking.

The descriptive statistics are highly suggestive but limited, since the theory emphasizes that

we cannot make inferences about the sign of the change in bias or the magnitude of the increase

in coverage from these reduced-form facts alone. To learn about the impact of clustering on

bias and coverage, I therefore estimate an augmented version of the Andrews and Kasy (2019)

model using data from clustered studies.4 Consistent with estimates in alternative settings, I

3The journals are: American Economic Review, the Industrial and Labor Relations Review, the Journal
of Labor Economics, the Journal of Political Economy, the Journal of Public Economics, and the Quarterly
Journal of Economics.

4The augmented empirical model follows Vu (2024), which extends the empirical model in Andrews and
Kasy (2019) to estimate the latent distribution of standard errors.
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find a high degree of publication bias in the empirical DiD literature: significant findings at the

5% level are around 43 times more likely to be published than insignificant findings.

Next, I use the estimated model to calculate what would have happened if clustered studies

had instead reported unclustered standard errors. To do this, I make the simplifying assumption

that unclustered standard errors are downward biased by a constant factor r. I then calibrate

r such that the model prediction matches differences in key moments between the clustered

and unclustered studies.5 This gives r̂ = 0.59, meaning that clustered standard errors tend to

be around 70% larger than unclustered standard errors.

Model estimates show that clustering led to large improvements in coverage. In the unclus-

tered regime, the coverage probability of published confidence intervals was only 0.36. This

implies severe mismeasurement in the calculation of confidence intervals prior to the adoption

of clustering, with only around one in three published confidence intervals containing the true

parameter value. By contrast, coverage doubled to 0.72 in the clustered regime, a dramatic

improvement but still below nominal coverage of 0.95 due to publication bias.

Despite substantial increases in coverage, clustering also led to average bias in published

studies increasing by around 60%, from 1.47 percentage points to 2.34 percentage points. This

is equivalent to the increase in bias that would occur when moving from a regime with no

selective publication (where bias is zero) to one that censors 78% of statistically insignificant

results at the 5% level (with clustered standard errors). That is, the impact of clustering on

bias is comparable to a fairly severe degree of publication bias.

Given the trade-offs between bias and coverage, the welfare implications of clustering are

unclear. To understand the implications of clustering on evidence-based policy, I develop a

model where policymakers use evidence from published studies to inform a policy decision, but

where reported standard errors may be unclustered. In the model, a policymaker chooses a

treatment rule which maps findings from published studies to policy choices, with the aim of

minimizing maximum regret i.e. the expected welfare loss due to making the inferior decision

(Savage, 1951; Manski, 2004; Stoye, 2009; Tetenov, 2012). Following Frankel and Kasy (2022)

and Kitagawa and Vu (2023), I consider the case where selective publication can censor studies

from being observed by policymakers.

The treatment choice model extends existing frameworks by analyzing treatment choice

under the mistaken belief that unclustered standard errors reflect the true standard error. This

operationalizes the costs and benefits of clustering in a policy context. On the one hand,

clustered standard errors allow policymakers to more accurately gauge the statistical precision

of the evidence contained in published studies, resulting in better informed decisions. On the

5This assumes the same underlying distribution of latent (published and unpublished) studies in clustered
and unclustered studies.
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other hand, studies with larger standard errors are more likely to be insignificant and censored,

leaving policymakers to act without evidence.

Calibrating the treatment choice model to the DiD setting, I find that clustering lowers

minimax regret when policymakers weigh welfare losses from implementing an ineffective or

harmful treatment (Type I error) at least 73 times more than welfare losses from failing to

implement a beneficial treatment (Type II error). As a benchmark, note that Type I error

would need to be weighed around 100 times more than Type II error for a decision rule that

minimizes maximum regret to rationalize hypothesis testing with a 5% statistical significance

threshold (Tetenov, 2012). Thus, the model suggests that clustering improves treatment choice

if we use the benchmark for loss aversion implicitly implied by conventional hypothesis testing.

The intuition behind this result is that decision-makers in the unclustered regime overestimate

the precision of published parameter estimates, which leads to a suboptimal decision rule that

is too lenient with respect to the evidence required for implementing the policy. This leniency

is especially costly when policymakers exhibit a high degree of loss aversion for mistakenly

implementing an ineffective or harmful policy (i.e. Type I error).

Related Literature. This paper contributes to, and connects, two large literatures: the

metascience literature on publication bias (Card and Krueger, 1995; Ioannidis, 2005, 2008;

Franco et al., 2014; Gelman and Carlin, 2014; Ioannidis et al., 2017; Miguel and Christensen,

2018; Amrhein et al., 2019; Andrews and Kasy, 2019; Frankel and Kasy, 2022; DellaVigna

and Linos, 2022) and the econometrics literature on robust measures of uncertainty (Anderson

and Rubin, 1949; White, 1980; Moulton, 1986, 1990; Bertrand et al., 2004; Lee et al., 2022;

Abadie et al., 2023). While both literatures are guided by the overarching goal of improving

the credibility of empirical analysis, little attention has been paid to how they interact. This

paper builds on existing publication selection models to provide general theoretical results on

how standard error corrections can affect estimated treatment effects, true treatment effects,

bias and coverage. Empirically, it uses newly collected data from the DiD literature to show

that clustering led to substantial improvements in coverage but also large increases in bias.

This paper also contributes to the literature on statistical decision theory and treatment

choice (Wald, 1950; Savage, 1951; Stoye, 2009, 2012; Tetenov, 2012; Kitagawa and Tetenov,

2018; Frankel and Kasy, 2022). In the existing literature, treatment choice models typically

assume that standard errors are correctly measured. This paper extends existing minimax

regret models to incorporate broader concerns in the econometrics literature that statistical

inference is impaired by mismeasured standard errors.

This paper proceeds as follows. Section 2 develops the theoretical framework and presents

the main propositions. Section 3 describes the empirical setting and presents the descriptive
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statistics. Section 4 shows the results from the empirical model. Section 5 develops the treat-

ment choice model and presents the main welfare results. Section 6 concludes.

2. Theory

2.1. Model of Publication Bias and Standard Error Corrections

I begin by introducing a model of how studies are generated and published in an empirical

literature of interest. This could be a literature addressing many different research questions

(e.g. the DiD literature). Alternatively, it could be a meta-analysis focused on a single question

(e.g. the impact of job training programs on employment outcomes). The model builds on the

selective publication model in Andrews and Kasy (2019) to incorporate the possibility that

reported standard errors are downward biased. While much of the discussion is framed around

clustering to match the empirical application, the same model applies more generally to any

method correcting for downward bias in standard errors. Proofs for all propositions are in

Appendix A.

Suppose we observe estimated treatment effects, standard errors, and an indicator for

whether or not standard errors are corrected for a sample of published studies indexed by

j. The model of the data generating process has five steps:

1. Draw latent true treatment effect and standard error: Draw a research question

with true treatment effect (βj) and standard error (σj):

(βj, σj) ∼ µβ,σ

where µβ,σ is the joint distribution of latent true effects and latent standard errors.

2. Estimate the treatment effect: Draw an estimated treatment effect from a normal

distribution with parameters from step 1:

β̂j|βj, σj ∼ N(βj, σ
2
j )

3. Report standard errors based on ‘standard error regime’ r:

σ̃j = r · σj

where the corrected regime (Cj = 1) has r = 1 and the uncorrected regime (Cj = 0) has

r ∈ (0, 1). Thus, in the uncorrected regime, the reported standard error underestimates

the true standard error.
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4. Publication selection: Selective publication is modeled by the function p(·), which
returns the probability of publication for any given t-ratio using the reported standard

error. Let Dj be a Bernoulli random variable equal to one if the study is published and

zero otherwise:

Pr(Dj = 1|β̂j, σ̃j) = p

(
β̂j

σ̃j

)
(1)

We observe i.i.d. draws from the conditional distribution of (β̂j, σ̃j, Cj) given Dj = 1. In the

corrected regime, standard errors are accurately measured with r = 1 and the model coincides

with the Andrews and Kasy (2019) model. However, the model differs in the uncorrected

regime, since reported standard errors are downward biased with r ∈ (0, 1). This implies that

reported t-ratios are upward biased since |β̂j|/σ̃j > |β̂j|/σj. Imposing a constant downward bias

factor of r permits a simple exposition of the model.6 In the empirical application, I perform

a robustness exercise where r is drawn from a distribution.

I impose a number of regularity conditions and assumptions. First, I normalize true treat-

ment effects to be positive and assume a finite first moment:

Assumption 1 (True Treatment Effect Normalization). Let βj have support on a subset of the

non-negative real line, not be degenerate at zero, and have a finite first moment.

For empirical literatures examining different questions and outcomes, normalizing true ef-

fects to be positive is justified because relative signs across studies are arbitrary.7 The require-

ment that βj not be degenerate at zero is to avoid the special case where coverage probabilities

always equal zero when all insignificant results are censored by the publication process.

Second, I assume that true effects are statistically independent of standard errors:

Assumption 2 (Independence of True Effects and Standard Errors). Let βj ⊥⊥ σj.

This is commonly assumed in meta-analyses and is also assumed in the ‘meta-study’ esti-

mation approach proposed in Andrews and Kasy (2019), which I implement in the empirical

section. It is unlikely to hold when experimental researchers choose sample sizes based on pre-

dicted effect sizes in power analyses (e.g. Camerer et al. (2016)) or when target parameters are

mechanically correlated with standard errors through measurement.8 However, it may be more

6Note however that all theoretical results can be generalized to the case where r is a random variable with
support on (0, 1), provided that r ⊥⊥ (β̂j , βj , σj).

7This assumption would not be appropriate when analyzing a single question with heterogeneous treatment
effects ranging across both negative and positive values.

8For example, Chen (2023) considers estimates of tract-level economic mobility in the Opportunity Atlas
(Raj et al., 2020). Census tracts with more low-income household have (i) lower true economic mobility and (ii)
more precise estimates of economic mobility due to larger sample sizes. This generates a positive correlation
between true economic mobility and standard error estimates.
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likely to hold in experimental settings where exogenous budget constraints are the main deter-

minant of sample sizes, or in observational settings where available datasets are the primary

determinant of the sample size.

Finally, I assume that publication bias depends on statistical significance:

Assumption 3 (Publication Selection Function). Let p(β̂j/σ̃j) = 1− (1−γ) ·1[|β̂j|/σ̃j < 1.96]

with γ ∈ [0, 1).

That is, significant results (based on the reported standard error) at the 5% level are pub-

lished with probability one, while insignificant results are published with probability γ ∈ [0, 1).

This assumption is used to match the common concern that publication favors statistical sig-

nificant findings. The 5% significance level is chosen because it is the most commonly used

critical threshold. However, the main theoretical results generalize to other critical thresholds.

2.1.1. Illustrative Example

Consider a simple example to illustrate the model and motivate the general theoretical results

which follow. Suppose researchers are interested in studying the impact of a health reform on

average life expectancy, and that the reform is implemented in some states and not others.

For the first stage of the model, suppose the average treatment effect for treated states

(ATT) is equal to a one-year improvement in life expectancy, β = 1, and that the standard

error is σj = 1 for all studies j = 1, 2, ...J (i.e. the joint distribution of true effects and

standard errors, µβ,σ, is degenerate). In the second stage, researchers conduct a large number

of independent DiD studies to learn about the (unobserved) ATT, each producing an unbiased

DiD estimate β̂j drawn from a N(1, 1) distribution. For the third stage, we consider two regimes

for calculating standard errors. In the clustered regime, researchers correctly cluster by state

and reported standard errors equal true standard errors (σ̃j = σj). However, in the unclustered

regime, researchers fail to cluster by state and erroneously report standard errors which are

half their true value (r = 1
2
and σ̃j < σj). In the last stage, only a subset of the latent DiD

estimates β̂j are published due to publication bias. In particular, suppose that the publication

process censors all insignificant findings at the 5% level (i.e. γ = 0 in Assumption 3).

While both standard errors regimes are subject to the same degree of publication bias,

statistical significance is easier to obtain in the unclustered regime because t-statistics are

upward biased by a factor of two. Thus, the studies selected for publication differ across

regimes. We are interested in how this affects both bias and coverage in published DiD studies.

First, consider bias and recall that the true ATT is a one-year improvement in life ex-

pectancy. In the unclustered regime, reported standard errors are half the true value such that

the effective threshold for statistical significance is half of what it should be. Thus, all DiD
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estimates β̂j whose absolute values are smaller than 1.96× 1
2
= 0.98 years are censored by selec-

tive publication. This clearly leads to upward bias, and the average DiD estimate conditional

on publication is Er[β̂j|Dj = 1] = 1.64 years (where the subscript indicates the standard error

regime r = 1
2
). Clustering makes matters worse because increasing reported standard errors

raises the effective threshold for statistical significance. Now, DiD estimates whose absolute

values are smaller than 1.96 years are censored, which further exacerbates publication bias,

increasing the average DiD estimate conditional on publication to E1[β̂j|Dj = 1] = 2.45 years.

Thus, overall, clustering increases bias by 0.81 years (or 127%). This is a very large effect:

it is more than twice the magnitude of bias in the unclustered regime, and around four-fifths

of the true ATT. Alternatively, it is equivalent to the increase in bias that would arise when

moving from a regime with no publication bias to a regime where 88% of insignificant results

at the 5% level are censored (based on correctly measured standard errors). In other words,

the impact of clustering on bias is comparable to very severe levels of publication bias.

Higher bias implies that estimates are, on average, further away from the true ATT. This

raises the question of whether clustering could potentially fail to meet its primary goal of

improving the average coverage of published confidence intervals (in this example, and also

more generally). It turns out that coverage conditional on publication does in fact increase

in this case, by 19 percentage points (0.65 to 0.84). The proof in Lemma A.6 in Appendix A

shows that higher coverage is equivalent to showing that the hazard function of the normal

distribution is increasing. Whether coverage increases is more general settings is addressed in

the following section.

This example illustrates a key tension emphasized throughout this paper: for the studies

selected for publication, improvements in the credibility of confidence intervals through better

coverage (↑ 19 ppts) can come at the unintended cost of a deterioration in the credibility of

point estimates due to increased bias (↑ 125%). The example also demonstrates that these

effects can be large.

Of course, this tension has only been shown here for a special case where (µβ,σ, γ, r) =(
Pr[βj = 1, σj = 1] = 1, 0, 1

2

)
. In the remainder of this section, I move beyond this special case

to answer, in general, what happens to bias and coverage in published studies when standard

error corrections for downward bias are applied. In particular, I derive exact conditions under

which the tension between increased bias and coverage generalizes to other settings.

2.2. Bias

The illustrative example above shows that it is possible for standard error corrections to increase

bias in published studies. Under what conditions does this conclusion hold more generally? In
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this subsection, I show that a sufficient condition for increased bias is that corrections are

‘sufficiently’ large, and present an example where small corrections can lead to a decrease in

bias.

The theoretical results apply to both empirical literatures examining a single question of

interest (e.g. the impact of a health reform on life expectancy) and to those addressing different

research questions (e.g. the empirical DiD literature examining different policy evaluations).

Also note that in what follows the true standard error is normalized to σj = 1 and omitted

from the notation for clarity.

Before presenting the main result, I define three key measures of bias. The first measure

is internal-validity bias, which is defined Er[β̂j − βj|Dj = 1] and where the subscript r in the

expectation denotes the standard error regime. The publication regime, γ, is implicit in the

notation, since we condition on publication (Dj = 1). Internal-validity bias corresponds to the

most common notion of bias in estimators. It asks how far, on average, published estimates are

from the questions they answer. The second measure is study-selection bias, which is defined

as Er[βj|Dj = 1]− E[βj].
9 This measures how far, on average, published true effects are from

the average that would occur if there were no publication bias. In certain contexts, this has

been referred to as ‘site-selection bias’ (Allcott, 2015).

The relevant measure of bias can depend on context. To illustrate, consider a slight variant

of the example on the impact of a health reform on life expectancy. Suppose that the true ATT

of a one-year improvement in life expectancy is in fact a weighted average of heterogeneous

treatment effects across treated states, and that different studies may examine different subsets

of treated states. If a team of researchers is only concerned with accurately evaluating a the

impact of a policy in a particular state (or subset of states), then internal-validity bias is

the relevant measure. However, suppose researchers are instead interested in the nation-wide

impact of the program. In this case, study selection bias is also a concern, because analyzing

states where the health reform was particularly effective – that is, where study-selection bias

is positive – would lead one to overestimate the true average impact of the policy.10

Finally, consider total bias, which is defined as Er[β̂j|Dj = 1] − E[βj]. It asks how far

published estimates are from the average true effect across all latent studies, and is equal

to the sum of internal-validity bias and study-selection bias. This relationship gives rise to

the following decomposition, which provides useful intuition for examining how standard error

9In general, study-selection bias is non-zero because true treatment effects βj follow a distribution. This
applies both when the empirical literature of interest is concerned with different questions and when it examines
a single question. Variation in true treatment effects may arise in the latter case because of heterogeneity across
studies in populations, research design, policies etc.

10Selecting policies based on evaluations with the largest estimates is known to induce upward bias in the
estimated policy impact. Procedures for correcting inference for this ‘winner’s curse’ are studied in Andrews et
al. (2023).
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corrections can affect each type of bias:

E1[β̂j |Dj = 1]−Er[β̂j |Dj = 1]︸ ︷︷ ︸
∆Estimated Treatment Effects = ∆Total Bias

= E1[β̂j − βj |Dj = 1]−Er[β̂j − βj |Dj = 1]︸ ︷︷ ︸
∆Internal-Validity Bias

+ E1[βj |Dj = 1]−Er[βj |Dj = 1]︸ ︷︷ ︸
∆Study-Selection Bias

(2)

That is, the change in total bias is equal to the sum of the change in internal-validity bias

and study-selection bias. The main result of this subsection provides a sufficient condition

under which all three changes are positive:

Proposition 1 (Large Corrections Increase Bias). Under Assumptions 1, 2, and 3, there exists

an r∗ ∈ (0, 1] such that for any r ∈ (0, r∗), internal-validity bias, study-selection bias, and total

bias all increase with standard error corrections.11

Proposition 1 states that sufficiently large standard error corrections inevitably lead to

increases in each of the three types of bias discussed. This is important for two reasons.

First, it implies that corrections are most likely to increase bias in published studies in the

cases where they are most needed. Second, prior evidence suggests relatively severe downward

bias in uncorrected standard errors in practice (Moulton, 1986, 1990; Bertrand et al., 2004).

Thus, large downward bias in uncorrected standard errors may be the empirically relevant case,

although a definitive answer requires knowledge of the underlying model parameters, which we

estimate in the empirical section for DiD studies.

For intuition underlying Proposition 1, consider internal-validity bias (other measures share

similar intuition). When standard errors are severely downwardly biased, almost all results are

reported as significant. Consequently, there is very little selective publication and estimates

have relatively small internal-validity bias. However, corrections increase standard errors, which

leads to more studies with small effect sizes being censored by the publication process and hence

higher bias. It follows that moving from the uncorrected regime with little bias to the corrected

regime must necessarily increase bias.

To see why the sufficient condition of large corrections is required, consider an example

where small standard error corrections lead to a decrease in internal-validity bias.12 Consider

a literature addressing two research questions, one with a small true effect and one with a

large true effect. Specifically, let the latent distribution of true effects βj take on two possible

values (β1, β2) = (1, 6) with probabilities 4
5
and 1

5
, respectively. Assume only one in twenty

11All inequalities are strict except for study-selection bias, which is a weak inequality. If the latent distribution
of true treatment effects is non-degenerate, then the inequality for study-selection bias is also strict.

12See Appendix B for examples where study-selection bias and total bias can decrease with small standard
error corrections.
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insignificant studies are published (γ = 1
20
) and unclustered standard are 80% of their true

value (r = 4
5
).

In the clustered regime, a higher share of studies addressing the question with the larger

effect (β2 = 6) are published relative to the unclustered regime. This is because studies address-

ing the question with the smaller true effect (β2 = 1) are more likely to be insignificant with

clustering and hence censored by selective publication. This decreases average internal-validity

bias by 0.03, because studies addressing the question with a very large effect size have bias

closer to zero.13 The intuition behind this is that when true effects are large, the probability

of obtaining an insignificant result, and thus being subject to publication bias, is low. Overall,

then, clustering shifts the distribution of published studies toward those with larger true effects

and hence smaller bias.

This example highlights a second important point: it is possible for estimated treatment

effects to increase with clustering, despite the fact that internal-validity bias decreases. To see

why, consider again the decomposition in equation (2). In this particular example, clustering

leads to an overall increase in estimated treatment effects (0.51) that reflects an increase in true

treatment effects (0.54) which outweighs a decrease in internal-validity bias (−0.03). Thus, by

observing higher effect sizes in clustered studies, it is not possible, in general, to infer the

sign of the change in bias. This underscores the limitations of what we can learn about bias

from reduced-form statistics calculated on observed effect sizes, and motivates estimating the

empirical model in Section 4, which can tell us about bias and coverage.

When standard errors downward biased with r = 4
5
, internal-validity bias decreases. How-

ever, Proposition 1 guarantees that bias must increase if corrections are sufficiently large. Fig-

ure 1 illustrates this by tracing out the change in internal-validity bias from adopting different

sized standard error corrections (r). In this example, we have that r∗ = 0.69, meaning that

corrections that enlarge standard errors by more than 45% will lead to an increase in bias.

In summary, internal-validity bias, study-selection bias, and total bias can in general increase

or decrease with corrections, but must always increases when corrections are sufficiently large.

2.3. Coverage

We turn next to how standard error corrections impact coverage probabilities in the presence

of publication bias. First, define expected coverage conditional on publication in standard error

regime r ∈ (0, 1] as Coverage(r) = Prr[βj ∈ (β̂j − 1.96r, β̂j + 1.96r)|Dj = 1] i.e. the proba-

bility that published 95% confidence intervals based on reported standard errors contain the

13This is shown graphically in Figure B1 in Appendix B.
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Figure 1. Change in internal-validity bias from adopting standard error corrections for different degrees of
downward bias r: E1[β̂j − βj |Dj = 1]−Er[β̂j − βj |Dj = 1], with γ = 1

20 . The dashed vertical line at r∗ = 0.77
denotes the value of below which bias always increases with standard error corrections.

true effect.14 Compare this to expected coverage in a standard econometric analysis without

publication bias: Prr[βj ∈ (β̂j −1.96r, β̂j +1.96r)]. In this instance, it is obvious that standard

error corrections for downward bias will increase coverage.

The presence of publication bias, however, introduces several complications. In the defi-

nition of Coverage(r), see that the degree of downward bias r affects not only the width of

reported confidence intervals, but also the studies (β̂j, βj) that end up making it into the pub-

lished literature through the conditioning Dj = 1. This is because statistical significance –

and therefore publication – may depend on the reported standard error. To illustrate, consider

Figure 2, which depicts, for a fixed true effect β, three possible realizations of the estimated

treatment effect β̂ (denoted by black points). Each realization would be treated differently un-

der clustered and unclustered regimes. Confidence intervals with clustering (purple) are twice

the width of those without clustering (yellow). Consider each case:

1. Expand CIs to include β: an interval that did not cover β or zero in the uncorrected

regime now expands to cover β while still not covering zero in the corrected regime.

Clustering therefore increases coverage.

2. Expand CI of a covered study to include zero: an interval that covered β but

14This definition is similar to the coverage concept discussed in Armstrong et al. (2022) in relation to empirical
Bayes confidence intervals, although here I condition on publication.
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Figure 2. Three Potential Effects of Clustering on Coverage Conditional on Publication

not zero in the uncorrected regime now expands to cover zero and is therefore censored

with some positive probability in the corrected regime. In this case, clustering decreases

coverage.

3. Expand CI for an uncovered study to include zero: an interval that did not cover

β or zero in the uncorrected regime now covers zero and is censored with some positive

probability in the corrected regime. This increases coverage.

In standard analyses that do not account for publication bias, the first effect is the only

relevant case and hence clustering clearly improve coverage. The second and third effects occur

due to publication bias, since clustering can now censor studies that would otherwise have been

published. The second effect decreases coverage while the third increases it.

In general, it is not clear a priori which effects dominate or even whether any of them

do dominate in all cases. A key reason for this difficulty lies in the fact that different true

effects end up in the published literature for the corrected and uncorrected regimes owing to

selective publication. Thus, the relative share of published estimates in each of the three cases

listed above varies across regimes and ultimately depends on the underlying model parameters.

Given that we allow for arbitrary distributions of latent true effects, µβ, this opens up a large

set of possible comparisons, including those which would in principle most favor corrections

worsening coverage.
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Despite these complications, the next result states, in general, that expected coverage in

published studies unambiguously increases:

Proposition 2 (Standard Error Corrections Increase Coverage). Under Assumptions 2 and 3,

Coverage(1)− Coverage(r) > 0 for any r ∈ (0, 1).

In practical terms, Proposition 2 means that we can extend the common intuition that

coverage increases with standard error corrections in individual studies to the more realistic

case where there is publication bias. It also rules out the possibility that both bias and coverage

might worsen with standard error corrections. In conjunction with Proposition 1, this implies

that standard error corrections always improve the average quality of variance estimates in

published studies, but can worsen bias when corrections are large.

The proof of Proposition 2 builds on the special case where the distribution of true effects

µβ is degenerate and γ = 0. In this special case, Lemma A.6 shows there are two cases to

consider, one where the degenerate value for β is relatively ‘large’ (β ≥ 2× 1.96r) and another

where it is relatively ‘small’ (β < 2× 1.96r) . For a large true effect, only effects one and three

in Figure 2 occur and thus coverage must increase with clustering. For ‘small’ true effects,

the proof shows that increased coverage is equivalent to showing that the hazard function for

normal distribution is increasing.

The general result extends this special case to allow for: (i) arbitrary levels of selective

publication against null results, γ ∈ (0, 1); and for (ii) arbitrary distributions of latent studies

µβ. Both generalizations are non-trivial extensions of the special degenerate case.

First, the generalization to any level of selective publication makes use of a result which

shows that any publication regime γ ∈ [0, 1] can be expressed as a mixture of a publication

regime which publishes all insignificant results (γ = 1) and one that censor all insignificant re-

sults (γ = 0). Loosely speaking, since coverage trivially improves in the former regime, we only

need to focus on the latter case where γ = 0. Second, generalizing the result to non-degenerate

distributions of true treatment effects uses the shape of the coverage probability curve as a

function of β and the fact that when γ = 0, the distribution of published true treatment effects

βj|Dj = 1 in the corrected regime with r = 1 first-order stochastically dominates the corre-

sponding distribution in the uncorrected regime with r < 1. Finally, note that the proof is not

specific to the 5% significance threshold and thus generalizes to other critical thresholds. For

more details, see Appendix A.

Remark 1 (Improvements in Coverage). A common concern with publication bias is that pub-

lished confidence intervals under-cover the true parameter. However, it is also theoretically

possible that they over-cover the true parameter, even when standard errors are uncorrected and

downward biased. In this case, Proposition 2 implies that corrections would increase coverage
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further, making them, on average, overly conservative. Lemma A.9 shows that a sufficient con-

dition for undercoverage in the uncorrected regime when nominal coverage is 0.95 is r < 0.8512.

Thus, when this condition is met, applying standard error corrections will either decrease the

distance to nominal coverage target or achieve coverage that is weakly higher than the nominal

target. In the empirical application to the DiD literature, the average coverage of published

confidence intervals in the uncorrected regime is estimated to be far below nominal coverage of

0.95.

3. Setting and Data

I turn now to analyzing the implications of the theoretical results in a particular setting:

the adoption of clustered standard errors in the empirical DiD literature. There are several

motivations for the empirical analysis. First, the theoretical results show that the impact of

standard error corrections on bias is ambiguous in general and depends on the distribution of

latent studies, the degree of selective publication, and the size of the standard error correction.

Second, the magnitude of the change in bias (irrespective of the sign) and coverage is an

empirical question. A third motivation is that DiD is an extremely popular research design

in economics and the quantitative social sciences more broadly, with growing use over time

(Currie et al., 2020). Below, I describe the setting and present descriptive statistics. The

following section estimates an empirical model and presents the main results.

3.1. Data

For the empirical analysis, I constructed a new dataset of DiD articles published in six journals

over 2000–2009: the American Economic Review, the Industrial and Labor Relations Review,

the Journal of Labor Economics, the Journal of Political Economy, the Journal of Public Eco-

nomics, and the Quarterly Journal of Economics. These journals were chosen to match those

analyzed in Bertrand et al. (2004) for the previous decade, 1990–2000. Following Currie et al.

(2020), I identified DiD articles using a string-search algorithm. I collected data on a single DiD

estimate in each study, excluding placebo tests and tests of alternative hypotheses. The single

DiD estimate was chosen as each paper’s first full-control DiD specification. For DiD articles

that fit the inclusion criteria described below, I manually collected data on the estimated DiD

treatment effect; the reported standard error; an indicator for whether a correction for serial

correlation is implemented; an indicator for policy evaluations15; and the number of observa-

15This denotes studies that evaluate a specific policy (e.g. by a government or firm) and does not refer to
studies which simply have policy relevance. For example, consider a study on the causal effect on the peer
effects of boys’ schooling outcomes on girls’, which is estimated by exploiting the impact of an earthquake on
compulsory military service for males. While this may have policy relevance, it is not considered here to be a
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tions. I also obtained JEL classification codes from EconLit. I did not collect the number of

clustering groups (e.g. states), since this is not always reported.

While the main type of serial correlation correction for standard errors in the sample is

clustering, a small number of studies implement other corrections e.g. block-bootstrapped

standard errors, two-period aggregation.16 A small number of studies cluster standard errors

at a level which does not account for serial correlation (e.g. clustering at the state-year level).

These studies are categorized as not having corrected standard errors for serial correlation. For

brevity, I use the term ‘clustering’ in this article to refer to any correction which accounts for

the correlation of errors within groups across time. While the ‘correct’ level of clustering is an

active topic of research (e.g. Abadie et al. (2023)), there is little disagreement over whether

standard errors should allow for serial correlation in DiD settings. For descriptive statistics in

this section, I simply present the reported standard errors for clustered and unclustered studies.

For the empirical model in the following section, I make a stronger assumption that reported

clustered standard errors reflect the true standard error.

To ensure meaningful comparisons of effect sizes across studies, I include studies where the

dependent variable is in percent or log units, or otherwise convertable to percent units. For

dependent variables in non-percentage units, the effect is recorded relative to the sample mean

of the treatment group prior to the treatment.17 Consider, for example, a study estimating

the impact of an educational program on the drop-out rate. I convert the estimated treatment

effect into percent units by dividing it by the mean drop-out rate of the treated group before

the intervention. When the mean of the treatment group prior to treatment is unavailable, I

instead normalize by the mean of the dependent variable for the whole sample.18 Two studies

did not report an average for the dependent variable and were excluded. For effect size con-

versions, standard errors are rescaled such that the t-ratio is unchanged. I restrict attention

to DiD estimates with an indicator for the treatment variable, and exclude, for example, esti-

policy evaluation.
16Since GLS corrections do not perform well in Monte Carlo simulations (Bertrand et al., 2004), I exclude

them from sample. Six studies with regressions at the state-cohort level (or region-cohort level, or municipality-
cohort level etc.) are included. For these studies, clustering at the state level (or similar) is counted as having
implemented an appropriate standard error correction.

17If the paper reported multiple DiD effects, some in levels and others in log units, I selected the log unit
regression. Note also that the normalized ATE is a different parameter to the ATE in log differences (Roth and
Chen, 2023).

18In a small number of cases, normalizing by the mean led to very large percent effects due to low base effect.
Four outliers whose effect sizes were above 100% were removed for this reason – two clustered studies and two
unclustered studies. This has little impact on the distribution of effect sizes for clustered and unclustered studies
(Figure C3). Alternatively, the analysis can be done on the restricted sample of studies that report effect sizes
in log units, which does not contain outliers. This has the added benefit of testing whether results are robust
to using the sample where no normalizations are made, although it leads to a much smaller sample size. Both
approaches yield similar results.
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Figure 3. Three-Year Centered Moving Average of the Clustering Adoption Rate

mated treatment effects based on changing the rate of a continuous treatment variable (e.g. 10

percentage point change in the share of those eligible for medicare).

Figure 3 shows a time series of the fraction of DiD articles implementing a correction for

serial correlation between 2000 and 2009. This period saw a dramatic rise in the adoption

of clustered standard errors, from around one in four at the beginning of the decade to near

universal adoption by the end of it. This could in part be due to the publication of Bertrand

et al. (2004), which was highly influential and released as a working paper in the early 2000’s.

Despite earlier emphasis in the econometrics literature on the importance of accounting for

correlation in errors within groups (e.g. Moulton (1986)), Bertrand et al. (2004) showed in

a survey of DiD studies that the use of corrections in the empirical literature was very rare

between 1990 and 2000. Specifically, Bertrand et al. (2004) identified 65 DiD papers with a

potential serial correlation problem and found that only five (7.7%) implemented some form of

standard error correction.

Table 1 presents summary statistics. The sample consists of 88 DiD studies, 62 of which

report clustered standard errors. Clustered studies have, on average, larger standard errors

than unclustered studies. This is consistent with the econometrics literature that emphasizes

downward bias in the absence of corrections (Moulton, 1986, 1990; Bertrand et al., 2004; Abadie

et al., 2023). The ratio of the average reported standard errors in unclustered studies to

clustered studies is 4.989/6.755 = 0.739 i.e. published clustered standard errors are on average

35% larger than published unclustered standard errors. It is important to note that 0.739 is

not an estimate of the degree of downward bias in unclustered standard errors (r), which would
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Table 1 – Summary Statistics: Unclustered and Clustered Studies using Difference-in-Differences

Unclustered Clustered Difference (2)-(1)

Reported standard error (%) 4.989 6.755 1.765
(5.935) (7.756) (1.520)

Effect size (%) 11.232 19.873 8.642
(12.641) (19.944) (3.536)

Number of JEL codes 2.885 3.290 0.406
(1.211) (1.260) (0.285)

JEL:H (Public) 0.231 0.226 -0.005
(0.430) (0.422) (0.099)

JEL:I (Health, Education & Welfare) 0.500 0.306 -0.194
(0.510) (0.465) (0.116)

JEL:J (Labor and Demographics) 0.577 0.548 -0.029
(0.504) (0.502) (0.117)

JEL:Other 0.577 0.661 0.084
(0.504) (0.477) (0.115)

Policy evaluation 0.923 0.790 -0.133
(0.272) (0.410) (0.074)

log(observations) 10.225 9.896 -0.329
(2.146) (2.070) (0.494)

Number.of.studies 26 62 –

Notes: The sample is DiD literature over 2000-2009 based on inclusion criteria described in the main text.
The first two columns report means and standard deviations below in parentheses. In the final column, robust
standard errors are reported from a regression of the row variable on an indicator for clustering. JEL codes H,
I and J are presented because they are the most commonly listed codes. JEL:H is an indicator which equals
one if at least one of the JEL codes is H; JEL:I and JEL:J are defined similarly. The variable JEL:Other equals
one if the study lists at least one code that is not H, I or J.

be equal to the ratio of unclustered to clustered standard errors in latent studies (published

and unpublished), not published studies.19

Clustered studies are also associated with much larger effect sizes than unclustered stud-

ies (19.9% vs. 11.2%). Here, the effect size is defined as the absolute value of the estimated

treatment effect. That larger standard errors are accompanied by higher effect sizes is consis-

tent with the main mechanism emphasized in the theory in Section 2, namely, that clustering

raises the bar for statistical significance and results in the selection of larger effect sizes due

to publication bias. More detailed descriptive statistics consistent with this interpretation are

presented further below.

The remaining rows of Table 1 show summary statistics on study characteristics. The

19In fact, this ratio is likely to be an upwardly biased estimate of r. This is because clustering increases
reported standard errors which makes publication more difficult. Clustered studies with smaller standard errors
are therefore more likely to be statistically significant and published, which would make this ratio larger.
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number of primary JEL categories is around around three for both clustered and unclustered

studies.20 The most common categories are H (Public Economics), I (Health, Education, and

Welfare), and J (Labor and Demographic Economics). While a high share of both unclustered

and clustered studies belong to these categories, clustered studies are somewhat less likely

to report category I. Similarly, while the majority of all studies are policy evaluations, the

fraction for clustered studies (0.79) is somewhat lower than in unclustered studies (0.92). These

comparisons are consistent with DiD research designs being applied to a wider variety of settings

over time. For additional descriptives statistics, see Appendix C.

3.2. Two Stylized Facts

In this subsection, I present descriptive statistics on two stylized facts:

1. Clustering was associated with the magnitude of published estimates almost doubling in

size, controlling for differences in research topics, sample size, and including year and

journal fixed effects; and

2. There is strong evidence of publication bias favoring statistically significant results.

3.2.1. Effect Size Gap

As shown in Table 1, there is a large difference in the magnitude of estimated treatment effects

between unclustered and clustered studies. Differences in observable study characteristics can-

not explain this gap. Table 2 reports results from a regression of the effect size on an indicator

for clustering, adding additional controls with each successive column. The final specifica-

tion includes year and journal fixed effects and controls for sample size, research topic (JEL

categories), and an indicator for policy evaluations. The estimated coefficient in the specifi-

cation with full controls implies that effect sizes in clustered studies are larger than those in

unclustered studies by a factor of 1.8 (19.9% vs. 11.2%).

This is a striking gap and consistent with a substantial shift in the distribution of published

studies. However, it is important to emphasize that the theoretical results in Subsection 2.2

show that observing larger estimated treatment effects in clustered studies cannot, in and of

itself, tell us whether bias has actually increased. The example presented there shows that

higher effect sizes can also be consistent with a decrease in bias.21 To make inferences about

20There are 26 primary JEL categories (A to Z) corresponding to different fields of economic research.
21Strictly speaking, the example shows that the unnormalizaed difference in effect sizes, E1[β̂j |Dj = 1] −

Er[β̂j |Dj = 1], is positive. However, it is also true in this example that the difference in the magnitude of

estimated treatment effects, E1[|β̂j |
∣∣Dj = 1] − Er[|β̂j |

∣∣Dj = 1] is positive. This section focuses on absolute

effect sizes because we do not in fact observe unnormalized effect sizes β̂j conditional on our normalization that
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Table 2 – Impact of Clustering on Effect Sizes

(1) (2) (3) (4)

Clustered 8.642 7.882 10.243 10.287
(3.536) (4.178) (4.913) (5.764)

Unclustered mean 11.232 11.232 11.232 11.232
Observations 88 88 88 88
Adjusted-R2 0.035 0.012 0.008 0.009
Year FE X X X
Journal FE X X
Study controls X

Notes: OLS regressions of estimated treatment effects on an indicator for clustering. The dependent variable
is in percent units (or log points for studies where the dependent variable in in logs). The estimated coefficient
on the clustering indicator is in percentage point units. Study controls include a quadratic on the log of the
number of observations, an indicator for policy evaluations, and a three-way interaction between the three most
common JEL primary categories: H (Public Economics), I (Health, Education, and Welfare), and J (Labor and
Demographic Economics). Robust standard errors are in parentheses.

changes in bias, it is therefore necessary to estimate the latent distribution of studies, which

we do in the following section.

Before that, however, I address a potential alternative explanation for the observed gap,

namely, that it is driven by strategic clustering. This is a particular form of endogeneity

where researchers p-hack their standard errors to increase the chances of publication. For

example, suppose that researchers strategically choose not to cluster if doing so would overturn a

statistically significant result. This behavior would also generate a positive correlation between

clustering and estimated treatment effects. Thus, the effect size gap in Table 2 might reflect

the impact of clustering on estimated treatment effect via selective publication process and

strategic clustering by researchers.

To test whether strategic clustering is driving this result, I examine effect sizes of unclus-

tered studies in the 1990–1999 period from the same set of journals. During this period, the

overwhelming majority of studies reported unclustered standard errors (Bertrand et al., 2004)

and hence strategic clustering is unlikely to be affecting the distribution of effect sizes. If strate-

gic clustering was absent in the 1990–1999 period, but present during the 2000–2009 period,

then, all else equal, we might expect effect sizes to be smaller in the 2000–2009 period. This is

because strategic clustering would increase the fraction of published studies in the unclustered

regime with relatively small effect sizes that would be ‘just significant’ without clustering, but

βj is positive (Assumption 1). For a concrete example, consider a study with an observed estimate β̂j , and an
unobserved true effect βj , which could be positive or negative. Now normalize the true effect to be positive |βj |.
Whether or not we switch the sign of β̂j to be consistent with this normalization requires knowledge of the sign
of unnormalized βj , which we do not observe.
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insignificant with it. Instead, I find that the mean effect size in the 2000–2009 period is almost

exactly the same as the mean effect size in the 1990–1999 period (11.23% and 11.54%). The

difference is statistically indistinguishable from zero, although statistical power is somewhat

limited. Controlling for differences in observable study characteristics, including JEL topics

and sample sizes, does not change this conclusion. This supports the idea that strategic clus-

tering of the simple form discussed here is not driving observed differences in effect sizes across

clustered and unclustered regimes. This, of course, covers only one form of endogeneity and

other forms could in principle be present. For more details, see Appendix D.

It is important to keep in mind that the primary goal of the empirical analysis is to estimate

the changes in bias and coverage that occur due to clustering, not simply changes in effect sizes.

To this end, in the following section, I propose an estimation approach for the empirical model

that yields unbiased estimates of the model parameters irrespective of whether or not there

is strategic clustering of the simple form described here. This alterative estimation approach

also provides an additional test for strategic clustering, by comparing robust model estimates

to those in the baseline model. Using this approach, we cannot reject the null hypothesis of no

strategic clustering. See Subsection 4.1 for further discussion.

3.2.2. Selective Publication on Statistical Significance

The second stylized fact concerns evidence for publication bias favoring statistically significant

results. While publication bias has been documented in a wide variety of settings, it is important

to test for it in the DiD setting, for two reasons. First, to establish the applicability of the

theoretical results; and second, to justify estimating the selective publication model in the

following section. I explore two common approaches used in the meta-science literature for

detecting selective publication.

The first is the metaregression approach proposed in Card and Krueger (1995). Figure 4

visualizes a regression of effect sizes on reported standard errors. Panels (a) and (b) separate

articles using clustered and unclustered standard errors, respectively. The results are consistent

with selective publication on the basis of statistical significance, for at least three reasons. First,

there are relatively few studies with statistically insignificant results. Second, larger standard

errors are associated with larger effect sizes. Metaregression estimates in both regimes give a

slope coefficient which implies that a 1.6–2.2 percentage point increase in standard errors is

associated with a little over a two percentage point increase in estimated effect sizes – this

is, close to the increment necessary for maintaining statistical significance. In the absence of

selective publication, there may be little reason to expect a systematic relationship between

estimated treatment effects and standard errors, because the sample size in observational studies
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Figure 4. Selective Publication and p-Hacking

Notes: These figures present evidence of selective publication and p-hacking in the empirical DiD literature over
2000–2009. Panels (a) and (b) report OLS regressions of estimated treatment effects on standard errors in the
unclustered and clustered regime. The dashed line separates statistically significant and insignificant results at
the 5% level. Robust standard errors are reported in parentheses. Panels (c) and (d) show the distribution
of absolute t-statistics for both regimes; the vertical dashed line is at 1.96, the critical threshold for statistical
significance at the 5% level.
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is not typically chosen but instead predetermined by available datasets.22 Finally, given that

unclustered standard errors are systematically downward biased, one would expect, under the

null hypothesis of no selective publication, that clustering would lead to a decrease in the slope

coefficient on standard errors. Instead, the estimated linear relationship between treatment

effects and reported standard errors is statistically indistinguishable across regimes, and the

point estimate in the clustered regime is actually larger than in the unclustered regime.

Following Brodeur et al. (2016), a second test examines the distribution of t-statistics to

determine if there is a bunching around critical significance thresholds. Panel (c) shows the dis-

tribution of test statistics for unclustered studies, while Panel (d) shows the same for clustered

studies. The vertical dashed line marks the 5% threshold significance level. In both figures,

there is a large mass of t ratio values just above this threshold, and a ‘missing’ mass just below

it. Despite the fact that standard errors are systematically higher in clustered studies, the

distributions appear very similar in both regimes, providing additional evidence of selective

publication (or p-hacking).

4. Empirical Model

Descriptive statistics provide evidence that clustering led to a change in the distribution of

estimated treatment effects via selective publication. However, from these descriptives alone,

we cannot make inferences about some of the main quantities of interest, namely, bias and

coverage. To do this, I follow an empirical strategy consisting of two steps. In the first, I

estimate the model in Section 2 using data from clustered DiD studies. This gives parameters

governing the latent distribution (µβ,σ) and selective publication (γ) for clustered studies. With

these model estimates, we can analyze counterfactual scenarios of what would have happened

had clustered studies instead reported unclustered standard errors which were downward biased

by any specified factor r. In the second step, I describe two approaches for calibrating reasonable

values for r and then present the main results.

4.1. Estimation

First, I estimate the model of selective publication in Section 2 using data from clustered studies.

Restricting attention to clustered studies avoids having to impose strong assumptions about the

mapping between unclustered standard errors and (unobserved) clustered standard errors for

unclustered studies in the likelihood function.23 Following Andrews and Kasy (2019), I estimate

22This contrasts with experimental studies where larger sample sizes may be chosen by authors performing
power calculations to detect small expected effect sizes.

23This is because for unclustered studies, publication is based on unclustered standard errors while the true
variation of the estimated treatment effect is based on the unobserved clustered standard error.



25

the latent distribution of true effects assuming that βj ⊥⊥ σj (Assumption 2) and βj|λβ, κβ ∼
Gamma(λβ, κβ). Following Vu (2024), I augment the baseline model to jointly estimate the

distribution of standard errors, assuming this also follows a gamma distribution: σj|λσ, κσ ∼
Gamma(λσ, κσ). This is necessary for calculating coverage. In line with the theory, I assume

publication probabilities follow a step function where the relative probability of publishing a

statistically insignificant result at the 5% level is given by γ.24 Finally, note that clustered

standard errors are assumed in estimation to reflect the true variation of estimated treatment

effects.

Consistency of the model parameters requires that the choice to cluster is independent of

the estimated treatment effect conditional on the true effect: Cj ⊥⊥ β̂j|βj. This assumption

is violated if there is strategic clustering, which I address below in an alternative estimation

approach. It is not violated, however, by non-random clustering with respect to study char-

acteristics. For example, there is suggestive evidence in Table 1 that DiD studies outside of

Health, Education & Welfare (JEL:I) are more likely to use clustered standard errors. If this

were indeed the case, then estimation would still yield consistent estimates of the latent dis-

tribution of studies in the clustered regime; however, the latent distribution in the unclustered

regime would differ. This has implications for interpreting the main results, which I discuss

further below.

Table 3 presents the maximum likelihood estimates. The estimate γ̂ = 0.023 implies a high

degree of selective publication. In particular, it means that statistically significant results are

around 43 times more likely to be published than insignificant results. This is broadly similar to

estimates of publication bias in Andrews and Kasy (2019) for replication studies in economics

(γ̂ = 0.038) and psychology (γ̂ = 0.017).

As mentioned above, the presence of strategic clustering would lead to model misspecifica-

tion and inconsistent parameter estimates. To address this potential issue, I propose an alter-

native estimation approach which is robust to the a scenario where researchers choose to cluster

if and only if it does not change the significance of their results. The main idea is to estimate

the parameters governing the latent distribution of studies on the selected subset of statistically

significant clustered studies; this entails setting γ = 0 and not estimating it. The rationale is

that the distribution of significant, clustered studies, β̂j, σj|Dj = 1, Cj = 1, |β̂j|/σj ≥ 1.96, is

completely invariant to this form of strategic clustering. This is because strategic clustering

only affects studies whose results are insignificant when clustered but significant when unclus-

tered. However, none of these studies are included in the subsample of statistically significant

24This is similar to Assumption 3 in that selective publication follows a step function at the 5% level. It
differs, however, in that it does not impose that γ ∈ [0, 1). In particular, estimation allows the possibility that
γ ≥ 1 such that the relative probability of publishing insignificant results is the same as, or higher than, for
significant results. Note that publication probabilities are only identified up to scale.
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Table 3 – Maximum Likelihood Estimates

Latent true effects βj Latent standard errors σj Selection
κβ λβ κσ λσ γ

0.151 18.202 1.318 7.292 0.023
(0.045) (6.417) (0.171) (1.723) (0.009)

Notes: Estimation sample is clustered DiD studies over 2000–2009 (N = 62). Robust standard errors are in
parentheses. Latent true treatment effects and standard errors are assumed to follow a gamma distribution
with shape and scale parameters (κ, λ). The coefficient γ measures the publication probability of insignificant
results at the 5% level relative to significant results. For example, γ = 0.023 implies that significant results are
around 43 times more likely to be published than insignificant results.

clustered studies. Thus, the distribution of studies, and hence the likelihood, is unaffected by

whether or not strategic clustering is present. Lemma E.1 in Appendix E presents a formal

statement and proof for this claim. Robust model estimates are presented in Table E1 and sta-

tistically indistinguishable from the baseline estimates in Table 3. This suggests that strategic

clustering of the form discussed here does not bias baseline parameter estimates.25 Given these

results, I focus on the model estimates in Table 3.

4.2. Unclustered Counterfactuals

With the model estimates in Table 3, we can calculate bias and coverage under the counter-

factual scenario where clustered studies report unclustered standard errors that are downward

biased by any specified factor r ∈ (0, 1). We can then compare these statistics across unclus-

tered and clustered regimes. The interpretation of this counterfactual comparison is analogous

to an ATT measure of the impact of clustering (‘treatment’) on the statistical properties of

published, clustered studies. If the latent distribution of studies is the same in clustered and

unclustered studies, then this ATT is equivalent to an ATE measuring the average impact of

clustering on both unclustered and clustered studies. However, if it differs across clustered

and unclustered regimes, then this ATT measure might differ from an ATE measure, a point

returned to below.

This ATT measure can be computed for any specified value of r ∈ (0, 1) using only the model

estimates in Table 3. The following subsection is aimed at calibrating a reasonable value for r

from the data. However, before that, recall Proposition 1, which states that bias must increase

for sufficiently large standard error corrections i.e. for any r less than some model-dependent

value r∗. In fact, based on the estimates in Table 3, I find that r∗ = 1. That is, any correction

25Given similar parameter estimates, the results for bias and coverage using the robust approach are also
very similar to those presented in the main text. For more details, see Appendix E.
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leading to larger standard errors would lead to an increase in bias in published DiD studies.

Since Proposition 2 guarantees increased coverage, it follows that the qualitative conclusion of

higher bias and coverage will hold for any sized correction. The quantitative results, however,

will depend on r, with larger corrections leading to larger changes in both bias and coverage.26

We turn next to calibrating a reasonable value for r.

4.3. Calibrating r

This subsection considers alternative approaches for calibrating r. As a starting point, note

that the first-best approach would be to obtain the empirical distribution for r by calculating

the ratio of unclustered to clustered standard errors from all studies in the estimation sample of

clustered studies. Unfortunately, this is not possible because code and data availability policies

were uncommon in the 2000’s. Instead, I use two alternative approaches. I focus on the first

in the main text and show that the second provides very similar results in Appendix G.

In the first approach, I make the simplifying assumption that all unclustered standard errors

are downward biased by a constant factor r ∈ (0, 1). I then calibrate r using the method of

simulated moments (McFadden, 1989). Specifically, I select the value of r which minimizes

the distance between moments predicted by the model and the actual moments observed in

the data. Given that r measures the degree of downward bias in unclustered standard errors,

the moment I choose for calibration is the percent difference in average reported standard

errors between clustered and unclustered studies in the published literature. Carrying out this

procedure gives r̂ = 0.59. In other words, clustered standard errors are estimated to be around

1.7 times the size of unclustered standard errors.27 This is a large adjustment.

Note that this calibration approach assumes that the distribution of latent studies in clus-

tered studies is the same as in unclustered studies. This would be violated, for example, if there

are differences in the datasets which tend to be used in latent unclustered and clustered studies,

since this would imply differences in the latent distribution of standard errors. Nevertheless,

if the assumption is violated, then we still obtain a valid counterfactual for what would have

occurred if clustered studies had instead been unclustered so that reported standard errors were

59% the size of true standard errors.

To address some of the concerns with the first method, I propose an alternative approach

which calculates the empirical distribution of r using a sample of DiD studies between 2015–

2018. Over this period, code and data availability policies were more common than in the

26See Figure F1 for the impact of clustering on bias and coverage over the full range of r over the unit
interval.

27Lee et al. (2022) propose a standard error adjustment for the single-IV model and apply it to recently
published AER papers. In this setting, they find that corrected standard errors are at least 49 percent larger
(i.e. r ≤ 0.672) than conventional 2SLS standard errors at the 5% level.
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Figure 5. Empirical Distribution of r from 2015–2018 DiD Studies

Notes: Calculated from original code, where r equals the ratio of unclustered to clustered standard errors.
The sample consists of a subset of DiD studies identified in Brodeur et al. (2022). For more details on sample
selection, see the main text.

2000–2009 period. The benefit of this approach is that it does not require the assumption the

latent distribution of studies is identical across regimes. Moreover, it is immune to concerns

over strategic clustering because unclustered and clustered standard errors are calculated for

each individual study. Its main drawback relative to the first approach, however, is external

validity, since it is based on data from a later time period.

To implement this approach, I examine DiD papers published between 2015–2018 as iden-

tified in Brodeur et al. (2020). I collected data on standard errors from six of the 25 journals

sampled in that study.28 While code is available for almost all studies, not all use publicly

available data. Overall, I calculate r in 23 out of 72 DiD studies (31.9%) using non-proprietary

data. Figure 5 shows the empirical distribution. The mean is 0.76 and a small fraction of stud-

ies have clustered standard errors which are larger than unclustered standard errors (r > 1).

For calculating the counterfactual scenario for unclustered studies, we can randomly sample

from this distribution to determine the degree bias for each study individually. This is useful

28The journal are Applied Economic Journal: Applied Economics, Applied Economic Journal: Economic
Policy, American Economic Review, Journal of Labor Economics, Journal of Political Economy and the Quar-
terly Journal of Economics. Four overlap with journals from the main analysis. The two excluded journals are
the Industrial and Labor Relations Review, which is not in the Brodeur et al. (2020) sample; and the Journal
of Public Economics, which did not require authors to submit data and code over the 2015–2018 period. I
included data from Applied Economic Journal: Applied Economics and Applied Economic Journal: Economic
Policy due to a small sample size based on the four overlapping journals alone. The two additional journals were
chosen because they: (i) published a high share of DiD studies over this period; and (ii) required replication
materials for publication.
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because in reality, r varies across studies and depends on the within-cluster correlation of the

regressor, the within-cluster correlation of the error, and the number of observations in each

cluster (Cameron and Miller, 2015). As mentioned above, both approaches lead to quantita-

tively similar conclusions. In the main text, I focus on the first approach using the method of

simulated moments to calibrate r.

4.4. Impact of Clustering on Coverage and Bias

Table 4 presents the main results. The estimated model shows that clustering increased coverage

dramatically, from only 0.36 in the unclustered regime to 0.72 in the clustered regime. This

implies severe mismeasurement of standard errors prior to the adoption of clustering, with only

a little more than one in three published studies reporting confidence intervals covering the true

effect. Note that while coverage improves substantially, it still remains, at 0.72, below nominal

coverage of 0.95 due to selective publication.

The remaining rows in Table 4 show the impact of clustering on various measures of bias.

Recall that the change in total bias can be decomposed into the change in internal-validity

bias and study-selection bias (equation (2)). In this context, the primary measure of interest is

internal-validity bias. This is because different studies in the empirical DiD literature address

different research questions, and the main concern is therefore each study’s internal validity.

The model shows that clustering led to internal-validity bias increasing by around 60%, from

1.47 ppts to 2.34 ppts. To gauge the size of this change, we can ask what fraction of insignificant

results (with correctly measured standard errors) would need to be censored by publication bias

to observe the same increase bias (0.88 ppts)? The answer is that 78% of null results would

need to be censored (i.e. γ = 0.22). In other words, the increase in internal-validity bias

from clustering is comparable to fairly severe levels of publication bias against null results.

Next, see that clustering leads to a large increase in study-selection bias, as studies with larger

true treatment effects are more likely to produce statistically significant results and therefore

be selected for publication. Changes in study-selection bias do not have clear implications

for statistical credibility in the DiD context, since different studies address different research

questions. Increases in study-selection bias and internal-validity bias mean that total bias rises

by 5.17 ppts overall.

The main results assume that standard errors are downward biased by a constant factor

r, which is calibrated from the data. An alternative approach, discussed in Subsection 4.3,

instead uses the empirical distribution of r from DiD studies published between 2015 and 2018.

These results are presented in Table G1 in Appendix G. In this approach, the degree of bias

of unclustered studies is drawn randomly from the distribution of r (Figure 5), which varies
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Table 4 – Impact of Clustering on Coverage and Bias in Published Studies

Unclustered (r̂ = 0.59) Clustered (r = 1) Change

Coverage 0.36 0.72 0.36

Total Bias (Er[β̂j |Dj = 1]−Er[βj ]) 4.34 (100%) 9.51 (100%) 5.17 (100%)

Internal-Validity Bias (Er[β̂j − βj |Dj = 1]) 1.47 (33.7%) 2.34 (24.6%) 0.88 (17.0%)
Study-Selection Bias (Er[βj |Dj = 1]−Er[βj ]) 2.88 (66.3%) 7.17 (75.4%) 4.29 (83.0%)

Notes: These figures are based on the parameter estimates of the empirical model in Table 3. Figures are calcu-
lated by simulating published studies under unclustered and clustered regimes and assuming that unclustered
standard errors are downward biased by a constant factor r̂ = 0.51.

across unclustered studies. Results are quantitative similar to those in Table 4. In particular,

clustering improves coverage from 0.37 to 0.72, and internal-validity bias increases by 1.00 ppts.

Alternatively, assuming that unclustered studies are downward biased by a constant factor

equal to the mean of the empirical distribution (r̂ = 0.76) yields qualitatively similar results,

but somewhat smaller changes in both coverage and bias. For more details, see Appendix G.

Overall, the results underscore the tension from clustering which has been emphasized

throughout this paper, namely, that improved credibility of standard errors can come at the

unintended cost of declining credibility in point estimates. Quantifying this in the DiD literature

shows that both the benefits and costs are empirically large.

4.5. Non-Selective Publication

A common recommendation to combat distortions arising from publication bias is to implement

reforms to publish all results, irrespective of their statistical significance. For example, imple-

menting results-blind peer review (Chambers, 2013; Foster et al., 2019), launching journals

dedicated to publishing insignificant findings29, and even offering cash incentives for publishing

null findings (Nature 2020).

To analyze the impact of these reforms in the DiD literature, I perform a counterfactual

analysis where there is no selective publication. In other words, I perform the same empirical

exercise as for the main results, but set γ = 1 such that no insignificant studies are censored.

When publication is non-selective, there exists no trade-off between coverage and bias when

clustering. Coverage increases from 0.68 to reach nominal coverage of 0.95, and all forms of

bias are zero in both standard error regimes. The welfare implications, however, are not clear.

In particular, publishing all results is not necessarily without drawbacks. This is because non-

29Examples include: Positively Negative (PLOS One); Journal of Negative Results in Biomedicine; Journal
of Articles in Support of the Null Hypothesis; Journal of Negative Results - Ecology and Evolutionary Biology.
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selective publication leads to many published studies with small true treatment effects that are

very imprecisely measured, and hence relatively uninformative for decision-makers who rely on

empirical evidence from published studies to make policy choices. As noted in Frankel and

Kasy (2022), if publication comes at a cost (e.g. the opportunity cost of drawing attention

away from other studies due to limited journal space), then it is not necessarily the case that

the non-selective regime is preferable to the selective regime. To better understand the impact

of clustering on welfare, I develop a treatment choice model in the next section to evaluate the

impact of clustering on decision-making in a policy context.

5. Impact of Clustering on Evidence-Based Policy

The empirical model in Section 4 shows that the adoption of clustering in the DiD literature led

to large improvements in coverage but also substantially higher bias. What are the implications

of this for evidence-based policy? In this section, I develop a model of a policymaker who

chooses whether or not to implement a policy based on evidence from published studies, but

who overestimates the precision of estimates when standard errors are unclustered. I consider

a policymaker who aims to minimize maximum regret i.e. the expected welfare loss from

making an inferior treatment choice. The main finding is that clustering lowers minimax regret

if and only if the policymaker has sufficiently high loss aversion with respect to mistakenly

implementing an ineffective or harmful policy i.e. of committing Type I error. Taking high

levels of loss inversion implied by standard hypothesis testing as a benchmark (Tetenov, 2012)

would suggest that clustering is beneficial for policymaking.

5.1. Setup

The model extends the model of minimax regret decision-makers in Manski (2004) and Tetenov

(2012) in two ways. First, to include publication bias. Second, to allow for the possibility that

reported standard errors are mismeasured (e.g. from failing to cluster).

The policymaker’s problem is to decide whether they should implement a single policy

(a = 1) or not implement it (a = 0).30 The policy’s unobserved average treatment effect is

denoted by β. All members of the population are assumed to be observationally identical. We

normalize utility to be zero when no policy is implemented. Following Tetenov (2012), I consider

30A more general formulation of the policymaker’s problem is to assign some portion a ∈ [0, 1] of observa-
tionally identical members of a population either a status quo treatment or an innovative treatment. Assuming
a ∈ {0, 1} does not affect the results. This is because in the continuous action case for the model in Tetenov
(2012), on which this model is based, the policymaker’s decision rule for an observational identical population
will either treat all or none of the members. For expositional simplicity, I consider the status quo treatment to
be not implementing the policy and the innovative treatment to be implementing it.
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a policymaker whose utility function may exhibit loss aversion (Kahneman and Tversky, 1979)

for implementing a harmful policy (β ≤ 0). Specifically, the policymaker’s utility from an

action a with average treatment effect β is given by

U(a, β|K) =

Kaβ if β ≤ 0

aβ if β > 0
(3)

where K ≥ 1 measures the policymaker’s loss aversion. As K increases, the policymaker weighs

the utility cost of committing Type I error (implementing the policy when β ≤ 0) increasingly

high relative to Type II error (not implementing the policy when β > 0). As a benchmark,

note that classical hypothesis testing is consistent with a high degree of loss aversion from Type

I error. In particular, regret from committing Type I error would need to be weighed around

100 times more than Type II regret for a decision rule that minimizes maximum regret to be

consistent hypothesis testing with a 5% statistical significance threshold (Tetenov, 2012).

A study is conducted which provides evidence about true average treatment effect β. How-

ever, due to publication bias, it may not be observed by the policymaker. The policymaker’s

statistical treatment rule maps realizations of the publication process to policy decisions. There

are two possibilities. First, the standard case where a study is published and the policymaker

uses the evidence contained in it to inform their policy choice. Second, the case where no study

is published and the policymaker must rely on a default action.

Let D = 1 denote the event when a study is published and D = 0 the event where it is not.

Consider first the case where D = 1. When the study is published, the policymaker observes

(β̂, σ̃), that is, the estimated treatment effect β̂ and the reported standard error σ̃. If standard

errors are clustered, then σ̃ = σ. If they are unclustered, then σ̃ = r · σ < σ since r ∈ (0, 1).

Importantly, the policymaker’s statistical decision rule is chosen based on their beliefs about

how a study’s results, (β̂, σ̃), were generated. In the main analysis, I consider a naive policy-

maker who believes β̂ is normally distributed on B = R according to N(β, σ̃2), since approx-

imate normality is widely assumed in practice for inference, including in all the DiD papers I

examine. This belief may be incorrect on two counts. First, if there is publication bias, then

β̂ is not normally distributed but follows a truncated normal distribution. Thus, in practical

terms, nativity means that policymakers simply take estimates from the published literature

at face-value, and do not make statistical adjustments to correct for publication bias. Second,

beliefs will be wrong about the variance of the estimate σ̃2 in the case where standard errors are

unclustered. In other words, policymakers take reported standard errors in published studies to

be accurate measures of the estimate’s uncertainty, irrespective of whether they are clustered

or not.
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We turn next to see how these beliefs affect the policymaker’s decision rule. Let δ1 : B →
[0, 1] be the statistical decision rule in the event that a study is published, which maps observed

estimates to the probability of implementation. Following Tetenov (2012), it is sufficient to

restrict our attention to smaller class of threshold decision rules where a policy is implemented if

and only if the published estimate β̂ is above some chosen threshold T i.e. δT1 (β̂) = 1{β̂ > T}.31

Thus the expected welfare of the threshold rule δT1 under the misspecified belief that β̂ is normal

and the observed, but potentially mismeasured, standard error σ̃, is equal to

W̃
(
δT1 , β, σ̃|K

)
=

Kβ
[
1− Φ

(
T−β
σ̃

)]
if β ≤ 0

β
[
1− Φ

(
T−β
σ̃

)]
if β > 0

(4)

To derive a decision rule, it is first necessary to adopt a framework for dealing with the

uncertainty of β. Two common approaches are the Bayesian framework and minimax regret

framework. For example, in the Bayesian approach, the policymaker sets a prior belief distribu-

tion π over the average treatment effect β and chooses a threshold T to maximize (misspecified)

expected welfare:
∫
W̃
(
δT1 , β, σ̃

)
π(β)dβ.

However, in many situations, policymakers may have insufficient information to form a

reasonable prior or priors may conflict when decisions are made by members of a group. In

this situation, a common alternative is to introduce ambiguity on the treatment outcomes and

pursue robust decisions. Specifically, I consider a policymaker that aims to minimize maximum

regret (Manski, 2004; Stoye, 2009; Tetenov, 2012), where regret for a threshold rule δT1 equals

the difference between the highest possible expected welfare outcome given full knowledge of

the true impact of all treatments and the expected welfare attained by the statistical decision

rule:

R̃1

(
δT1 , β, σ̃|K) = W

(
1{β > 0}

)
− W̃

(
δT1 , β, σ̃|K

)
=

−Kβ
[
1− Φ

(
T−β
σ̃

)]
if β ≤ 0

βΦ
(
T−β
σ̃

)
if β > 0

(5)

In words, regret is equal to the probability of making a mistake multiplied by the magni-

tude of that mistake |β| (and weighted according to K). Thus, the policymaker chooses their

minimax regret threshold decision rule based on misspecifed beliefs to minimize regret in the

31This is because the policymaker believes X to follow a normal distribution, which satisfies the monotone
likelihood ratio property. It follows from Karlin and Rubin (1956) that the class of threshold decision rules is
essentially complete and consideration of other rules is not necessary.
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worst-case scenario:

T ∗ = argmin
T∈R

max
β∈β

R̃1

(
δT1 , β, σ̃|K) (6)

Next, consider the event where no study is published. The no-data decision rule is denoted

by δ0 ∈ [0, 1], which denotes the probability of implementing the policy when no evidence is

available. Using a similar derivation as above, we arrive at the following expression for regret

R̃0

(
δ0, β|K) =

−Kβδ0 if β ≤ 0

β(1− δ0) if β > 0
(7)

Note that this expression is also misspecified, in that the policymaker makes no inferences

about the fact that a study might have been censored. Similar to the event where a study is

published, the no-data decision rule is obtained by the following optimization

δ∗0 = argmin
δ0∈[0,1]

max
β∈β

R̃0

(
δ0, β|K

)
(8)

For the no-data decision problem to be well-defined, we impose the following bounds on the

support of β:

Assumption 4 (Symmetric Bounds on Average Treatment Effect). Let the support of β be

[−B,B] for some B > β∗ > 0, where β∗ = argmaxβ>0

{
β · Φ(0− β)

}
.

The technical condition requiring that the bound be sufficiently large ensures that the

minimax regret problem in the event that a study is published is not constrained by the bound.

Overall, the policymaker’s minimax decision rule (T ∗, δ∗0) covers both realizations of the

publication process and is chosen according to (6) and (8).

5.2. Minimax Regret Decision Rule

The follow result gives the minimax decision rule under misspecified regret, covering both the

clustered regime (σ̃ = σ) and unclustered regime (σ̃ < σ):

Lemma 1 (Minimax Regret Decision Rule). Under Assumptions 3 and 4, the minimax regret

decision rule for a publication-bias naive policymaker given reported standard error σ̃ and Type

I error loss aversion parameter K is given by

(T ∗, δ∗0) =

(
g(K) · σ̃, 1

1 +K

)
(9)

where g(K) is a strictly increasing function of K and g(1) = 0
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Figure 6. Minimax Regret Decision Rule in Clustered and Unclustered Regimes

Notes: The first panel shows the threshold rule in the event that a study is published and given by equation
(6). The second panel shows the no-data rule in even that a study is not published. The level of publication
bias γ̂ = 0.016 and the extent of downward bias r̂ = 0.51 are based on the empirical model estimated on studies
in the DiD literature in Section 4.

Figure 6 illustrates Lemma 1 calibrating to the level of publication bias (γ̂ = 0.023) and

downward bias in standard errors (r̂ = 0.59) in the empirical DiD literature. In the first

panel, observe that the threshold rule in both regimes is increasing in the Type I error loss

aversion parameter K, but that in the unclustered regime it is strictly below the clustered

regime’s threshold rule when K > 1.32 For intuition, see that the threshold rule in equation

(9) is decreasing in reported precision. That is, higher reported precision means that the

policymaker believes the estimate to convey more information about the true treatment effect

and hence a less conservative threshold rule is chosen. Thus, in the unclustered regime, the

policymaker overestimates the precision of evidence from published studies and is therefore too

lenient with their threshold rule for implementing the policy. Note also that the absolute size

of the difference increases with Type I error loss aversion.33

The second panel shows the minimax regret decision rule when no study is published. We

can see that the probability of implementing the policy decreases as K increases (and equals
1
2
when K = 1). This is because the welfare cost of implementing an ineffective or harmful

32Note that the threshold rule in the clustered regime coincides exactly with the threshold rule in the model
with normal signals in Tetenov (2012), although in this setting signals are not in fact normally distributed.

33This is because Lemma 1 implies that the threshold rule in the unclustered regime is downward biased by a
constant factor r, since T ∗

C=0/T
∗
C=1 = g(K) · σ̃/g(K) ·σ = r. Hence, if T ∗

C=1 increases with K, then T ∗
C=1−T ∗

C=0

must also grow with K.
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policy increases with K, which leads the policymaker to be more conservative with respect to

implementing the policy. Note that the no-data rule is unaffected by whether or not standard

errors are clustered, since no study is actually observed by the policymaker.

5.3. Comparing Regimes Based on True Regret

We would like to compare decision-making outcomes in the unclustered and clustered regimes

on the basis of regret. However, recall that the minimax regret decision rule in Lemma 1 is

based on misspecified regret. Hence, to evaluate any given decision rule (T, δ0), we instead

use true regret. True regret is derived from accurate beliefs about β, namely, that it follows a

truncated normal distribution with (clustered) standard error σ, and where truncation down-

weights the insignificant region of the density (based on γ). The utility of action a1 when a

study is published and action a0 when it is not, is given by

U
(
a1, a0, β|K

)
=

KβDa1 + β(1−D)a0 if β ≤ 0

βDa1 + β(1−D)a0 if β > 0
(10)

and the expected welfare of the decision rule (T, δ0) is given by

W
(
δT1 , δ0, β, σ, σ̃|K

)
=

K

(
β ·Pr[D = 1|β, σ̃] · [1− F (T |β, σ, σ̃,D = 1)] + β ·

(
1−Pr[D = 1|β, σ̃]

)
δ0

)
if β ≤ 0

β ·Pr[D = 1|β, σ̃] · [1− F (T |β, σ, σ̃,D = 1)] + β ·
(
1−Pr[D = 1|β, σ̃]

)
δ0 if β > 0

(11)

where Pr[D = 1|β, σ̃] is the ex-ante publication probability conditional on (β, σ̃); and

F (·|β, σ, σ̃, D = 1) is the cdf of a truncated normal distribution.34 See that the probability

of publication is based on the reported standard error and thus the effective significance thresh-

old will differ across regimes. This also shows up in the cdf, where publication probabilities are

based on σ̃ but the true variation in the estimated treatment effect is governed by σ.

Finally, for a given average treatment effect β, true (i.e. clustered) standard error σ, and

the Type I error loss aversion parameter K, regret is given by the following expression:

34Specifically, the cdf is given by

F (t|β, σ, σ̃,D = 1) ≡
∫ t

−∞ p
(
x
σ̃

)
ϕ
(
x−β
σ

)
dx∫

p
(
x
σ̃

)
ϕ
(
x−β
σ

)
dx
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R
(
δT1 , δ0, β, σ, σ̃|K

)
=


−K · β

(
Pr[D = 1|β, σ̃] · [1− F (T |β, σ, σ̃,D = 1)] + (1−Pr[D = 1|β, σ̃])δ0

)
if β ≤ 0

β

(
Pr[D = 1|β, σ̃] · F (T |β, σ, σ̃,D = 1) + (1−Pr[D = 1|β, σ̃]) · (1− δ0)

)
if β > 0

(12)

Thus, true regret is equal to the ex-ante probability of making an the incorrect treatment

choice multiplied by the cost of the mistake |β|, and then weighted according to the planner’s

relative concern over Type I and Type II regret. Another way to interpret this expression is

that it is what the policymaker would be using to choose their decision rule in order to minimize

maximum regret if they had correct beliefs. The minimax regret of any decision rule (T, δ0)

given σ is given by

MMR(T, δ0|K) = max
β∈[−B,B]

R
(
δT1 , δ0, β, σ|K

)
(13)

For any K ≥ 1, let MMR∗
C=0(K) denote the value of minimax regret in the unclustered

regime based on the (misspecified) decision rule from Lemma 1 and let MMR∗
C=1(K) denote

the corresponding statistic for the clustered regime. Then the percent change in minimax regret

from moving from the unclustered regime to the clustered regime is given by

100 ·
(
MMR∗

C=1(K)

MMR∗
C=0(K)

− 1

)
(14)

Figure 7 plots this quantity for different values of the Type I error loss aversion parameter

K. Results show that clustering lowers minimax regret if and only if K > 73. Recall that

classical hypothesis testing at the 5% level entails a much larger level of loss aversion to Type

I error i.e. K = 102.4 (Tetenov, 2012). Thus, the model suggests that clustering increased

welfare if we use the benchmark cost implicitly implied by 5% hypothesis testing, although this

could be overly conservative in certain settings.

To understand the intuition behind this result, note that clustering presents a trade-off for

the policymaker. On the one hand, it improves the statistical precision of the evidence which

leads to a superior threshold rule. On the other hand, clustering increases the probability of

censoring studies, which increases the chances that policymakers are forced to make decisions

without evidence. Suppose that K = 1. In this unique case, the threshold rule is identical

across regimes (T ∗ = 0) and thus clustering provides no advantage. However, the probability of

publication is lower in the clustered regime such that minimax regret is substantially larger than

in the unclustered regime. However, as K increases, the trade-off described above gradually

moves in favor of clustering. This is because the threshold rule in the unclustered regime

becomes increasingly miscalibrated as K increases, which leads to larger costs in terms of
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Figure 7. Percent Change in Minimax Regret from Clustering

Notes: The percent change in minimax regret moving from the unclustered regime to the clustered regime is
calculated according to equation (14). The level of publication bias γ̂ = 0.023 and the extent of downward bias
r̂ = 0.59 are based on the empirical model estimated on studies in the DiD literature in Section 4.

minimax regret. When K is above 73, minimax regret in the clustered regime is lower than in

the unclustered regime.

6. Conclusion

The econometrics literature on standard error corrections and the meta-science literature on

publication bias share the common goal of improving credibility in empirical research. However,

they are most often considered in isolation and the interaction between them has received

scant attention. This paper studies how their interaction affects the statistically credibility of

published studies and decision-making among evidence-based policymakers.

A central tension highlighted in the theory is that standard error corrections increase cov-

erage but can also, unintendedly, worsen bias. Empirically, this tension is present in the DiD

literature, where the adoption of clustering led to large improvements in coverage but also

sizable increases in the bias of estimated treatment effects. Incorporating this trade-off in a

policymaking model with publication bias shows that clustering lowers minimax regret when

loss aversion to Type I error is sufficiently high.
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Appendix

This appendix contain proofs and supplementary materials. Section A contains proofs for the

Propositions and Lemmas in the main text. Section B provides examples showing that bias

can decrease when standard error corrections are small. Section C provides additional figures

illustrating the data. Section D shows descriptive statistics for unclustered studies in the 1990–

1999 period. Section E introduces an augmented model with strategic clustering and proposes

an estimation approach which is robust to certain forms of strategic clustering. It presents

results from this alternative approach and compares them to the main results for robustness.

Section F shows counterfactual comparisons between the clustered regime and the unclustered

regime for all values of r on the unit interval. Finally, Section G shows robustness of the main

results from using the empirical distribution of r calculated from 2015–2018 DiD studies.

A. Proofs

Proof of Proposition 1: The main result follows from two Lemmas which I prove below.

First, Lemma A.2 shows that there exists an r1 ∈ (0, 1] such that for any r ∈ (0, r1) internal-

validity bias increases:

E1[β̂j − βj|Dj = 1]−Er[β̂j − βj|Dj = 1] > 0

Next, Lemma A.3 claims that there exists an r2 ∈ (0, 1] such that for any r ∈ (0, r2)

study-selection bias weakly increases:

E1[βj|Dj = 1]−Er[βj|Dj = 1] ≥ 0

Define r∗ = min{r1, r2}. It follows that for any r ∈ (0, r∗), internal-validity bias and

study-selection bias both increase. This immediately implies that the change in total bias (and

estimated treatment effects), E1[β̂j|Dj = 1]−Er[β̂j|Dj = 1], is positive since it is equal to the

sum of the change in internal-validity bias and study-selection bias.

Below, I present Lemmas A.2 and A.3 on which this argument is based. Before that, I

present Lemma A.1, which is used in Lemma A.2.
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Lemma A.1 (Expression for Bias Conditional on Publication). For a given β ∈ [0,∞), γ ∈
[0, 1) and r ∈ (0, 1],

Bias(β, γ, r) =
(1− γ)

[
ϕ(1.96r − β)− ϕ(β + 1.96r)

]
Φ(−1.96r − β) + γ

[
Φ(1.96r − β)− Φ(−1.96r − β)

]
+ 1− Φ(1.96r − β)

(15)

where ϕ(·) and Φ(·) denote the normal pdf and cdf, respectively.

Proof. Define Zj = β̂j − β so that Zj ∼ N(0, 1) and bias conditional on publication is equal

to Er[Zj|Dj = 1] = Er[β̂j|Dj = 1] − β. We can write bias as the weighted sum of conditional

expectations of the standard normal distribution:

Er[Zj|Dj = 1]

= Prr[Zj ≤ −1.96r − β|Dj = 1] ·E[Zj|Zj ≤ −1.96r − β]

+ Prr[−1.96r − β < Zj ≤ 1.96r − β|Dj = 1] ·E[Zj| − 1.96r − β < Zj ≤ 1.96r − β]

+ Prr[Zj > 1.96r − β|Dj = 1] ·E[Zj|Zj > 1.96r − β]

=

(
Prr[Dj = 1|Zj ≤ −1.96r − β]Φ(−1.96r − β)

Prr[Dj = 1]

)(
− ϕ(−1.96r − β)

Φ(−1.96r − β)

)
+

(
Prr[Dj = 1| − 1.96r − β ≤ Zj ≤ 1.96r − β]

[
Φ(1.96r − β)− Φ(−1.96r − β)

]
Prr[Dj = 1]

)
×
(
ϕ(−1.96r − β)− ϕ(1.96r − β)

Φ(1.96r − β)− Φ(−1.96r − β)

)
+

(
Prr[Dj = 1|Zj ≥ 1.96r − β]

[
1− Φ(1.96r − β)

]
Prr[Dj = 1]

)(
ϕ(1.96r − β)

1− Φ(1.96r − β)

)
= − ϕ(−1.96r − β)

Prr[Dj = 1]
+

γ
[
ϕ(−1.96r − β)− ϕ(1.96r − β)

]
Prr[Dj = 1]

+
ϕ(1.96r − β)

Prr[Dj = 1]

The second equality uses Bayes’ Rule on the probability terms and the formula for the

expectation of a truncated standard normal on the expectation terms (i.e. for any a < b, we

have that E[Zj|Zj ∈ (a, b)] = [ϕ(a)− ϕ(b)]/[Φ(b)−Φ(a)]). The final equality uses Assumption

3, which states that the relative publication probabilities are one for significant results and γ

for insignificant results. Simplifying the numerator and expanding the denominator gives the

desired result.

Lemma A.2 (Sufficient Condition for Increase in Internal-Validity Bias). Under Assumptions

1, 2, and 3, there exists an r1 ∈ (0, 1] such that for any r ∈ (0, r1) internal-validity bias increases

with standard error corrections.
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Proof. First, I show that Er[β̂j|Dj = 1] → E[βj] as r → 0. Using Bayes Rule and the law of

iterated expectations, we have

Er[β̂j|Dj = 1] =

∫
β̂fβ̂|D(β̂|Dj = 1; γ, r)dβ̂ =

∫
β̂

(
Prr[Dj = 1|β̂j]fβ̂(β̂)

Prr[Dj = 1]

)
dβ̂

=

∫ (
β̂ · p

(
β̂
r

) ∫
β
ϕ(β̂ − β)fβ(β)dβ∫

β
Prr[Dj = 1|β]fβ(β)dβ

)
dβ̂ (16)

Note in the second equality that the distribution of latent studies fβ̂(·) does not depend

on either γ or r. Consider the integrand in (16). First, see that the numerator approaches

β̂
∫
β
ϕ(β̂ − β)fβ(β)dβ as r → 0. Next, see that the denominator satisfies

lim
r→0

∫
β

Prr[Dj = 1|β]fβ(β)dβ = 1

This equality uses the dominated convergence theorem to move the limit inside the integral

and the fact that the probability of publication for any fixed β approaches one as r → 0 (since

all results are significant, and hence not censored, in the limit). To see that the conditions for

the dominated convergence theorem are met, first see that the integrand converges pointwise

to fβ(β) as r → 0. Second, see that for any r ∈ (0, 1] and β ≥ 0, the integrand is bounded

above by fβ(β) since Prr[Dj = 1|β] ≤ 1.

Thus, returning to the full expression for the integrand in equation (16), we can see that it

converges pointwise to β̂
∫
β
ϕ(β̂ − β)fβ(β)dβ as r → 0. Next, see that for any r ∈ (0, 1] and

β̂ ∈ R, the absolute value of the integrand satisfies

|β̂| · p
(
β̂
r

) ∫
β
ϕ(β̂ − β)fβ(β)dβ∫

β
Prr[Dj = 1|β]fβ(β)dβ

≤ |β̂| · ϕ(0)∫
β
Pr1[Dj = 1|β]fβ(β)dβ

where the bound follows from the fact that p
(
x
r

)
≤ 1 and

∫
β
ϕ(x − β)fβ(β)dβ ≤ ϕ(0) in the

numerator, and Prr[Dj = 1|β] is strictly decreasing in r in the denominator.

Since the integrand in equation (16) (i) converges pointwise to β̂
∫
β
ϕ(β̂ − β)fβ(β)dβ and

(ii) is dominated by an integrable function, we can apply the dominated convergence theorem

and the law of iterated expectations to get

lim
r→0

Er[β̂j|Dj = 1] =

∫
β̂

β̂

∫
β

ϕ(β̂ − β)fβ(β)dβdβ̂

=

∫
β

(∫
β̂

β̂ϕ(β̂ − β)dβ̂

)
fβ(β)dβ =

∫
β

E[β̂j|β]fβ(β)dβ = E[βj] (17)
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which is what we wanted to show.

In the next step of the proof, I use similar arguments to also show that Er[βj|Dj = 1] →
E[βj] as r → 0. Using Bayes’ Rule, we can write

Er[βj|Dj = 1] =

∫
βfβ|D(β|Dj = 1; γ, r)dβ

=

∫
β

(
β ·Prr[Dj = 1|β]fβ(β)∫
β
Prr[Dj = 1|βfβ(β)dβ

)
dβ

Note that the latent distribution of true effects, fβ(β), does not depend on either γ or r.

Now see that the integrand converges pointwise to βfβ(β) as r → 0. This follows because

limr→0Prr[Dj = 1|β] = 1 in the numerator and because the denominator converges to one, as

shown earlier.

Next, see that for any r ∈ (0, 1] and β ≥ 0, we have

β ·Prr[Dj = 1|β]fβ(β)∫
β′ Prr[Dj = 1|β′]fβ(β′)dβ′ ≤

βfβ(β)∫
β′ Pr1[Dj = 1|β′]fβ(β′)dβ′

where the inequality follows from the fact that Prr[Dj = 1|β] is weakly less than one (nu-

merator) and decreasing in r (denominator). Note that the upper bound is integrable since

Assumption 1 requires βj to have a finite first moment. Thus, appealing again to the dominated

convergence theorem, we have

lim
r→0

Er[βj|Dj = 1] =

∫
β

βfβ(β)dβ = E[βj] (18)

Using the convergence in mean results in equations (17) and (18) and the linearity of ex-

pectations, it follows that

∆Bias(r) ≡ E1[β̂j − βj|Dj = 1]−Er[β̂j − βj|Dj = 1]

→ E1[β̂j − βj|Dj = 1] =

∫
β

Bias(β, γ, 1)fβ(β)dβ > 0 (19)

as r → 0. The final inequality follows because it is clear from Lemma A.1 that Bias(β, γ, 1) ≥ 0

when γ ∈ [0, 1) (Assumption 3) and β ≥ 0, and with strict inequality when β > 0. Assumption

1 requires that there exists some β > 0 on the support of βj, giving the strict inequality.

Now we can prove the main claim. Consider the following set:
{
r|r ∈ (0, 1],∆Bias(r) = 0

}
.

We know it is non-empty because ∆Bias(1) = 0. Label the minimum of this set r1. The claim
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is that for all r ∈ (0, r1), ∆Bias(r) > 0. We will prove this by contradiction. Suppose instead

that there exists an r̄ ∈ (0, r1) where

∆Bias(r̄) ≤ 0 < lim
r→0

∆Bias(r)

where the second inequality follows from equation (19). Note that ∆Bias(r) is continuous in r

over (0, 1) and well-defined for all r ∈ (0, 1]. Thus, there must exist some ϵ ∈ (0, r̄) such that

∆Bias(r̄) ≤ 0 < ∆Bias(ϵ). It follows from the intermediate value theorem that there exists an

r′ ∈ (ϵ, r̄) such that ∆Bias(r′) = 0 with r′ < r̄ < r1. But this contradicts the premise that r1

is the smallest number satisfying this equality.

Lemma A.3 (Sufficient Condition for Increase in Study-Selection Bias). Under Assumptions

1, 2, and 3, there exists an r2 ∈ (0, 1] such that for any r ∈ (0, r2) study-selection bias weakly

increases with standard error corrections.

Proof. Consider two cases. The first is the trivial case where the distribution of βj is degenerate

at some β > 0. Then for any r ∈ (0, 1], ∆SSB(r) ≡ E1[βj|Dj = 1] − Er[βj|Dj = 1] = 0. Let

r2 = 1. Then for any r ∈ (0, r2) there is no change in study-selection bias with standard error

corrections: ∆SSB(r) = 0.

Next, consider the case where the distribution of βj is non-degenerate. See that

lim
r→0

∆SSB(r) = E1[βj|Dj = 1]− lim
r→0

Er[βj|Dj = 1]

= E1[βj|Dj = 1]−E[βj]

=

∫ ∞

0

[1− Fβ|D(t|Dj = 1; γ, 1)]dt−
∫ ∞

0

[1− Fβ(t)]dt

=

∫ ∞

0

[Fβ(t)− Fβ|D(t|Dj = 1; γ, 1)]dt (20)

The second equality uses the convergence in expectation result in equation (18) from Lemma

A.2. The third equality uses the fact that for any non-negative random variable X with

cdf FX , we can write E[X] =
∫∞
0
[1 − FX(t)]dt. Equation (20) is positive if the distribution

of published true treatment effects in the corrected regime, Fβ|D(·|Dj = 1; γ, 1), first-order

stochastically dominates the latent distribution of true treatment effects Fβ(·). To show this

holds, fix t ∈ [0,∞) and see that∫ t

0

fβ(β)dβ −
∫ t

0

fβ|D(β|Dj = 1; γ, 1)dβ



48

=
1

Pr1(Dj = 1)

(
Pr1(Dj = 1)

∫ t

0

fβ(β)dβ −
∫ t

0

Pr1(Dj = 1|β)fβ(β)dβ
)

=
Fβ(t)

Pr1(Dj = 1)

(
Eβ

[
Pr1(Dj = 1|β)

]
−Eβ

[
Pr1(Dj = 1|β)

∣∣∣β ≤ t)
])

≥ 0

where the first equality uses Bayes’ Rule for the second term. The second equality uses the fact

that for any function g(·) and t > 0 we can write
∫ t

g(β)fβ(β)dβ = Eβ[g(β)|β ≤ t; γ, 1] · Fβ(t).

The final inequality follows from the fact that Pr1(Dj = 1|β) is an increasing function of β.35

Since βj is non-degenerate, there exists some t ∈ [0,∞) for which this inequality is strict. This

implies that equation (20) is strictly positive, which is what we wanted to show.

With this result, we can prove the main claim for the case where βj is non-degenerate,

namely, that for sufficiently small r, expected true treatment effects will increase following

standard error corrections. First, consider the set
{
r|r ∈ (0, 1],∆SSB(r) = 0

}
. We know it is

non-empty because ∆SSB(1) = 0. Label the minimum of this set r2. The claim is that for all

r ∈ (0, r2), ∆SSB(r) > 0. Suppose in contradiction of the claim that there exists an r̄ ∈ (0, r2)

where

∆SSB(r̄) ≤ 0 < lim
r→0

∆SSB(r)

where the second inequality follows from the arguments above. Note that ∆SSB(r) is continuous

in r over (0, 1) and well-defined for all r ∈ (0, 1]. Thus, there must exist some ϵ ∈ (0, r̄) such

that ∆SSB(r̄) ≤ 0 < ∆SSB(ϵ). It follows from the intermediate value theorem that there exists

an r′ ∈ (ϵ, r̄) such that ∆SSB(r′) = 0 with r′ < r̄ < r2. But this contradicts the premise that

r2 is the smallest number satisfying this equality.

Proof of Proposition 2: With a slight abuse of notation, let fβ(·) denote the distribution

of |βj|. This normalization is for notational convenience and is not necessary for proving the

result. Next, note that the proof is based on selective publication against insignificant results

at the 5% level, in line with Assumption 3; however, all arguments generalize straightforwardly

to other critical thresholds.

As a starting point, the following Lemma provides an expression for average coverage in

published studies for a fixed true effect, which will be used throughout the proof.

35The derivative is given by:

∂

∂β

[
Pr(Dj = 1|β; γ, 1)

]
= (1− γ)

(
ϕ(1.96− β)− ϕ(1.96 + β)

)
≥ 0

which is strictly positive when β > 0.
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Lemma A.4 (Expression for Coverage with Degenerate βj). For any β ∈ [0,∞), r ∈ (0, 1]

and γ ∈ [0, 1], expected coverage in published studies is equal to

Coverage(β, r) =


γ[Φ(1.96r−β)−Φ(−1.96r)]+Φ(1.96r)−Φ(1.96r−β)

Φ(−1.96r−β)+1−Φ(1.96r−β)+γ[Φ(1.96r−β)−Φ(−1.96r−β)]
if β ≤ 2× 1.96r

Φ(1.96r)−Φ(−1.96r)
Φ(−1.96r−β)+1−Φ(1.96r−β)+γ[Φ(1.96r−β)−Φ(−1.96r−β)]

if β > 2× 1.96r
(21)

Proof. Fix β ∈ [0,∞). See that

Coverage(β, r) = Prr[β̂j − 1.96r ≤ β ≤ β̂j + 1.96r|Dj = 1]

=

∫ β+1.96r

β−1.96r

fβ̂|D,β(β̂|Dj = 1, β; γ, r)dβ̂

=

∫ β+1.96r

β−1.96r
Prr(Dj = 1|β̂)ϕ(β̂ − β)dβ̂

Prr(Dj = 1|β)

using Bayes Rule in the last equality and the fact that the probability of publication does

not depend on the true effect β after conditioning on the estimate β̂. Recall that statistically

significant results are published with probability one and insignificant results with probabil-

ity γ ∈ [0, 1) (Assumption 3). Evaluating the integral in the numerator and expanding the

denominator gives the desired expression.

To begin, recall that the publication regime is uniquely characterized by γ ∈ [0, 1), the

relative probability of publishing insignificant results (Assumption 3). In the Lemma below, I

show that the distribution of published studies in any publication regime γ ∈ [0, 1) is isomorphic

to a mixture of a publication regime with γ = 0 (i.e. all insignificant results are censored) and

publication regime with γ = 1 (i.e. all insignificant results are published).

Lemma A.5 (Publication Regime as Mixed Distribution). The density of published studies in

publication regime γ ∈ [0, 1] and standard error regime r ∈ (0, 1), fβ̂,β|D(β̂, β|Dj = 1; γ, r), is

equivalent to the following mixture of densities:

fβ̂,β|D(β̂, β|Dj = 1; γ, r) = ω(r) · fβ̂,β|D(β̂, β|Dj = 1; 1, r) +
[
1− ω(r)

]
· fβ̂,β|D(β̂, β|Dj = 1; 0, r)

with

ω(r) =
γ

Prr(Dj = 1)
∈ [0, 1] (22)

Proof. For this proof, I express the probability of publication in publication regime γ and

standard error regime r explicitly as Pr(Dj = 1; γ, r) (rather than subscripting the probability).

The claim is trivially true in the case where γ = 0 or γ = 1. Let γ ∈ (0, 1). With Bayes Rule

and Assumption 3 which assumes a step-wise publication selection function, we have that
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fβ̂,β|D(β̂, β|Dj = 1; γ, r) =
Pr(Dj = 1|β̂; γ, r)ϕ(β̂ − β)fβ(β)

Pr(Dj = 1; γ, r)

=
1{|β̂| ≥ 1.96r}ϕ(β̂ − β)fβ(β) + γ1{|β̂| < 1.96r}ϕ(β̂ − β)fβ(β)

Pr(Dj = 1; γ, r)
(23)

Note in the first equality that the probability of publication does not depend on the true

effect β after conditioning on the estimate β̂.

Now consider the mixture of two publication regimes: (i) a regime where all results are

published (γ = 1) with weight ω(r) as defined in equation (22); and (ii) a regime where all

insignificant results are censored (γ = 0) with weight 1− ω(r). I show that the density of this

mixture is equivalent to the density of published studies for publication regime γ ∈ (0, 1) in

equation (23). Substituting the weights and densities in the mixture gives

ω(r) · fβ̂,β|D(β̂, β|Dj = 1; 1, r) +
[
1− ω(r)

]
· fβ̂,β|D(β̂, β|Dj = 1; 0, r)

=

(
γ

Pr(Dj = 1; γ, r)

)(
1{|β̂| ≥ 1.96r}ϕ(β̂ − β)fβ(β) + 1{|β̂| < 1.96r}ϕ(β̂ − β)fβ(β)

)

+

(
Pr(Dj = 1; γ, r)− γ

Pr(Dj = 1; γ, r)

)(
1{|β̂| ≥ 1.96r}ϕ(β̂ − β)fβ(β)

Pr(Dj = 1; 0, r)

)

=

(
Pr(Dj = 1; γ, r)− γ

(
1−Pr(Dj = 1; 0, r)

)
Pr(Dj = 1; 0, r)︸ ︷︷ ︸

≡κ

)(
1{|β̂| ≥ 1.96r}ϕ(β̂ − β)fβ(β)

Pr(Dj = 1; γ, r)

)

+

(
γ1{|β̂| < 1.96r}ϕ(β̂ − β)fβ(β)

Pr(Dj = 1; γ, r)

)
It is clear that this expression equals the density in the publication regime γ ∈ (0, 1) in

equation (23) provided that κ = 1. This can be verified by substituting the following identify

into the first term of the numerator:

Pr(Dj = 1; γ, r) =

∫
β

(
Φ(−1.96r − β) + 1− Φ(1.96r − β)

)
fβ(β)dβ

+ γ

∫
β

[Φ(1.96r − β)− Φ(−1.96r − β)]fβ(β)dβ

= Pr(Dj = 1; 0, r) + γ(1−Pr(Dj = 1; 0, r))

In the next step, I show that Lemma A.5 implies we only need to show that coverage
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increases with standard error corrections in the publication regime where γ = 0. For clarity,

let expected coverage in publication regime γ ∈ [0, 1] and standard error regime r ∈ (0, 1] be

denoted by

cγ(r) ≡
∫

Coverage(β, r)fβ|D(β|Dj = 1; γ, r)dβ

Lemma A.5 implies that expected coverage in publication regime γ can be written as a

weighted average of coverage in the ‘publish all insignificant results’ regime and the ‘publish no

insignificant results’ regime: cγ(r) = ω(r)c1(r) +
(
1− ω(r)

)
c0(r). This implies that the change

in expected coverage from standard error corrections in publication regime γ is equal to

cγ(1)− cγ(r) =
[
ω(1)c1(1) +

(
1− ω(1)

)
c0(1)

]
−
[
ω(r)c1(r) +

(
1− ω(r)

)
c0(r)

]
=
(
1− ω(r)

)(
c0(1)− c0(r)

)
+ ω(1)

(
c1(1)− c0(1)

)
− ω(r)

(
c1(r)− c0(1)

)
>
(
1− ω(r)

)(
c0(1)− c0(r)

)
where the inequality uses the fact that c1(1) − c1(r) = [Φ(1.96) − Φ(−1.96)] − [Φ(1.96r) −
Φ(−1.96r)] > 0, and ω(1) > ω(r) because the probability of publication in the denominator for

the weight in equation (22) is decreasing in r. These two inequalities imply that the product

in the second term is strictly greater than the product in the third term. Thus, we only need

to show that coverage increases in the case where γ = 0 to show that coverage increases overall

in publication regime γ ∈ [0, 1).

Fix γ = 0 for the remainder of the proof. We want to show that expected coverage increases

with standard error corrections:

c0(1)− c0(r)

=

∫ ∞

0
Coverage(β, 1)fβ|D(β|Dj = 1; 0, 1)dβ −

∫ ∞

0
Coverage(β, r)fβ|D(β|Dj = 1; 0, r)dβ

=

(∫ 2×1.96r

0
Coverage(β, 1)fβ|D(β|Dj = 1; 0, 1)dβ −

∫ 2×1.96r

0
Coverage(β, r)fβ|D(β|Dj = 1; 0, r)dβ

)

+

(∫ ∞

2×1.96r
Coverage(β, 1)fβ|D(β|Dj = 1; 0, 1)dβ −

∫ ∞

2×1.96r
Coverage(β, r)fβ|D(β|Dj = 1; 0, r)dβ

)
(24)

We will show that both differences in the parentheses are weakly positive, and that at least one

is strictly positive, which gives the desired result.

Consider the second difference, where the integrals are over β ≥ 2 × 1.96r. Consider the
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integrand in the second term of the difference (and keep the integral limits fixed). Using the

expression for coverage when β ≥ 2×1.96r from Lemma A.4 and Bayes’ Rule we have that the

integrand is equal to

Coverage(β, r)fβ|D(β|Dj = 1; 0, r) =

(
Φ(1.96r)− Φ(−1.96r)

Pr(Dj = 1|β; 0, r)

)
·

(
Pr(Dj = 1|β; 0, r)fβ(β)

Pr(Dj = 1; 0, r)

)

=

(
Φ(1.96r)− Φ(−1.96r)

Pr(Dj = 1; 0, r)

)
· fβ(β)

Consider the term in parentheses in the final line. The numerator is increasing in r and

the denominator is decreasing in r. Since both terms are strictly positive, this implies that the

integrand is weakly increasing in r (and strictly increasing when fβ(β) > 0). In equation (24),

this implies that the difference in the second parentheses is weakly positive, since the integral

limits are the same for both terms, but r takes its maximum value of one in the first term.

Next, I show that the first difference in (24) is weakly positive. To do so, I make use of

three Lemmas, which I state and prove below.

Lemma A.6 (Coverage Increases for Degenerate βj). Let γ = 0. For any β ∈ (0,∞) and

r ∈ (0, 1], we have
∂

∂r

(
Coverage(β, r)

)
> 0

Proof. We will show the more general result that coverage increases with corrections for de-

generate βj for any critical threshold c > 0 (note that at the 5% significance threshold we

have c = 1.96r). For convenience, let the second argument in the Coverage(·, ·) function be

the critical threshold c rather than the reported standard error r. The case where β ≥ 2c with

c = 1.96r has already been shown in the main text of the proof for the more general case where

βj follows a distribution. That proof clearly generalizes to other thresholds. Next, consider the

second case where β ∈ (0, 2c). The expression for coverage (Lemma A.4) when γ = 0 is given

by

Coverage(β, c) =
Φ(c)− Φ(c− β)

Φ(−c− β) + 1− Φ(c− β)

Taking the derivative with respect to c gives

∂

∂c

(
Coverage(β, c)

)

∝ ∂

∂c

(
Φ(c)−Φ(c−β)

)(
Φ(−c−β)+1−Φ(c−β)

)
−
(
Φ(c)−Φ(c−β)

)
∂

∂c

(
Φ(−c−β)+1−Φ(c−β)

)
where we ignore the denominator in the quotient rule since it is positive. This derivative is
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weakly positive if and only if

ϕ(c+ β) + ϕ(c− β)

1− Φ(c+ β) + 1− Φ(c− β)
≥ ϕ(c− β)− ϕ(c)

Φ(c)− Φ(c− β)
(25)

Now recall that for Z ∼ N(0, 1) and a < b, we have E[Z|Z ∈ (a, b)] = [ϕ(a)−ϕ(b)]/[Φ(b)−Φ(a)].

Hence we have

E[Z|Z ∈ (c+ β,∞)] =
ϕ(c+ β)

1− Φ(c+ β)
≡ µ1

E[Z|Z ∈ (c− β,∞)] =
ϕ(c− β)

1− Φ(c− β)
≡ µ2

E[Z|Z ∈ (c− β, c)] =
ϕ(c− β)− ϕ(c)

Φ(c)− Φ(c− β)
≡ µ3

For β ≥ 0, we have that µ1 ≥ µ2 ≥ µ3. Now let

ω =
1− Φ(c+ β)

1− Φ(c+ β) + 1− Φ(c− β)

Since ω ∈ (0, 1), we have that ωµ1 + (1 − ω)µ2 ≥ µ3, which gives the desired inequality in

(25).

Lemma A.7 (Derivative of Coverage With Respect to r). For any β ∈ [0,∞), r ∈ (0, 1] and

γ ∈ [0, 1], we have

∂

∂β

(
Coverage(β, r)

)
=

> 0 if β ≤ 2× 1.96r

< 0 if β > 2× 1.96r

Proof. We will prove the more general result for arbitrary critical threshold c > 0 (note that

c = 1.96r at the 5% significance threshold). That is, we will show that coverage is increasing in

β when β ≤ 2c and decreasing in β when β > 2c. As in Lemma A.6, let the second argument

in the Coverage(·, ·) function be the critical threshold c rather than the reported standard error

r. Consider the expression for coverage in Lemma A.4. Consider first the case where β ≤ 2c.

Using the quotient rule gives

∂

∂β

(
Coverage(β, c)

)
∝ ϕ(c− β)d(β, c)−

(
ϕ(c− β)− ϕ(c+ β)

)
n1(β, c) > 0

where we define the denominator as d(β, c) ≡ Φ(−c−β)+1−Φ(c−β)+γ[Φ(c−β)−Φ(−c−β)] > 0

and the numerator as n1(β, c) ≡ γ[Φ(c − β) − Φ(−c)] + Φ(c) − Φ(c − β) > 0. The inequality

follows because d(β, c) > n1(β, c) and ϕ(c− β) > ϕ(c− β)− ϕ(c+ β) > 0.

Consider next the case where β > 2c. Define the numerator as n2(β, c) ≡ Φ(c)−Φ(−c) > 0.
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Then

∂

∂β

(
Coverage(β, c)

)
∝ −n2(β, c) ·

∂

∂β

(
d(β, c)

)
= −n2(β, c) ·

[
(1−γ)

(
ϕ(c−β)−ϕ(c+β)

)]
< 0

Lemma A.8 (First Order Stochastic Dominance in Corrected Standard Error Regime). Let

Fβ|D(β|Dj = 1; γ, r) denote the cdf of published true treatment effects in standard error regime

r ∈ (0, 1] and publication regime γ ∈ [0, 1]. Then Fβ|D(β|Dj = 1; 0, 1) first-order stochastically

dominates Fβ|D(β|Dj = 1; 0, r) for any r ∈ (0, 1).

Proof. I establish first-order stochastic dominance by showing that the monotone likelihood

ratio property holds for the following ratio of densities. By Bayes Rule we have

fβ|D(β|Dj = 1; 0, 1)

fβ|D(β|Dj = 1; 0, r)
=

(
Pr[Dj=1|β;0,1]fβ(β)

Pr[Dj=1;0,1]

)
(
Pr[Dj=1|β;0,r]fβ(β)

Pr[Dj=1;0,r]

)
=

(
Φ(−1.96− β) + 1− Φ(1.96− β)

Φ(−c− β) + 1− Φ(c− β)

)
·K

where c ≡ 1.96r and K ≡ Pr[Dj = 1; 0, r]/Pr[Dj = 1; 0, 1] > 0. Thus the derivative with

respect to β is given by

∂

∂β

(
fβ|D(β|Dj = 1; 0, 1)

fβ|D(β|Dj = 1; 0, r)

)
∝ ∂

∂β

(
Φ(−1.96−β)+1−Φ(1.96−β)

)(
Φ(−c−β)+1−Φ(c−β)

)

−
(
Φ(−1.96− β) + 1− Φ(1.96− β)

)
∂

∂β

(
Φ(−c− β) + 1− Φ(c− β)

)
We want to show this is positive, which is equivalent to showing the following inequality

ϕ(1.96− β)− ϕ(1.96 + β)

1− Φ(1.96− β) + 1− Φ(1.96 + β)
≥ ϕ(c− β)− ϕ(c+ β)

1− Φ(c− β) + 1− Φ(c+ β)
(26)

Note that c = 1.96r < 1.96 since r ∈ (0, 1). Hence it suffices to show that the fraction

on the right hand side is increasing in c. To show this, first let Z ∼ N(0, 1). Then using the

formula for the expectation of a truncated normal gives

E[Z|Z ∈ (c− β, c+ β)] =
ϕ(c− β)− ϕ(c+ β)

Φ(c+ β)− Φ(c− β)
≡ µ1(β, c)

Next, define
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µ2(β, c) ≡
Φ(c+ β)− Φ(c− β)

1− Φ(c− β) + 1− Φ(c+ β)

Now see that µ1(β, c) · µ2(β, c) gives the right hand side ratio in equation (26). Thus the

derivative using the product rule is equal to

∂

∂c

(
µ1(β, c) · µ2(β, c)

)
=

∂

∂c

(
µ1(β, c)

)(
µ2(β, c)

)
+
(
µ1(β, c)

) ∂

∂c

(
µ2(β, c)

)
Showing that all four terms in this expression are positive is sufficient for proving the

derivative is positive. First, see that µ2(β, c) is clearly positive. Next, see that µ1(β, c) is

positive because it is the conditional expectation of a standard normal over an even interval

centered at c > 0. Moreover, the derivative ∂µ1(β, c)/∂c is positive because the conditional

expectation must increase when the fixed-width interval over which the expectation is taken

increases (i.e. shifts to the right). Finally, using the quotient rule, we have

∂

∂c

(
µ2(β, c)

)
∝ ∂

∂c

(
n(β, c)

)(
d(β, c)

)
−
(
n(β, c)

) ∂

∂c

(
d(β, c)

)
=
(
ϕ(c+ β)− ϕ(c− β)

)
d(β, c) + n(β, c)

(
ϕ(c+ β) + ϕ(c− β)

)
where n(β, c) ≡ Φ(c+β)−Φ(c−β) denotes the numerator and d(β, c) ≡ 1−Φ(c−β)+1−Φ(c+β)

the denominator. This derivative being positive is equivalent to

ϕ(c+ β)

d(β, c)− n(β, c)
≥ ϕ(c− β)

d(β, c) + n(β, c)
⇐⇒ ϕ(c+ β)

1− Φ(c+ β)
≥ ϕ(c− β)

1− Φ(c− β)

This inequality holds because the hazard function of the normal distribution is increasing

and c+ β ≥ c− β when β ≥ 0.

Thus, fβ|D(β|Dj = 1; 0, 1)/fβ|D(β|Dj = 1; 0, r) is increasing in β and therefore satisfies the

monotone likelihood ratio property. This implies first-order stochastic dominance, giving the

desired result.

Using these three Lemmas, we have that∫ 2×1.96r

0

Coverage(β, 1)fβ|D(β|Dj = 1; 0, 1)dβ −
∫ 2×1.96r

0

Coverage(β, r)fβ|D(β|Dj = 1; 0, r)dβ

≥
∫ 2×1.96r

0

Coverage(β, r)fβ|D(β|Dj = 1; 0, 1)dβ−
∫ 2×1.96r

0

Coverage(β, r)fβ|D(β|Dj = 1; 0, r)dβ ≥ 0

The first inequality uses Lemma A.6 to replace Coverage(β, 1) with Coverage(β, r) in the

first term. The final inequality follows from the fact that Coverage(β, r) is strictly increasing

over (0, 2 × 1.96r) (Lemma A.7) and first-order stochastic dominance in the distribution of
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published true effects in the corrected regime as compared with the uncorrected regime (Lemma

A.8). Thus, the difference is strictly positive if βj has support on a subset of (0, 2× 1.96r) and

zero otherwise.

Finally, note that βj is assumed to have support on a subset of the non-negative real line

and not be degenerate at zero (Assumption 1). This implies that both differences in equation

(24) are weakly positive and that at least one is strictly positive, completing the proof.

Lemma A.9 (Sufficient Condition for Undercoverage in Uncorrected Regime). If nominal

coverage equals 0.95 and r < 0.8512, then Coverage(r)< 0.95.

Proof. Let nominal coverage equal 0.95. Consider coverage conditional on publication in the

uncorrected regime:

Coverage(r) =

∫
Coverage(β, r)fβ|D(β|Dj = 1; γ, r)dβ ≤ Coverage(2× 1.96r, r)

=
Φ(1.96r)− Φ(−1.96r)

Φ(−3× 1.96r) + 1− Φ(−1.96r) + γ[Φ(−1.96r)− Φ(−3× 1.96r)]

≤ Φ(1.96r)− Φ(−1.96r)

Φ(−3× 1.96r) + 1− Φ(−1.96r)
(27)

The first inequality follows from Lemma A.7, which shows that Coverage(β, r) is increasing in

β when β ≤ 2×1.96r and decreasing in β when β > 2×1.96r; this implies that it is maximized

when β = 2 × 1.96r. The equality in the second line uses the formula for coverage in Lemma

A.4. The last inequality uses the fact that the expression in the second line is decreasing in γ.

Denote the final expression in equation (27) as h(r). It is straightforward to show that

dh(r)/dr > 0. Moreover, see that h(r) is continuous in r, and that h(0) = 0 and h(1) = 0.9744.

By the intermediate value theorem, it follows that there exists some r̄ ∈ (0, 1) such that

h(r̄) = 0.95. Since dh(r)/dr > 0, it follows that this value is unique and that h(r) < 0.95 for

all r < r̄. Finally, we can calculate that r̄ = 0.8512, completing the proof.

Proof of Lemma 1: First, consider the threshold rule. Tetenov (2012) considers the case

where the estimated treatment effect β̂ is normally distributed while I consider the case where

the policymaker erroneously believes it is normally distributed. Since the derivation of the

statistical decision rule is based on identical beliefs, the results from Tetenov (2012) on page

160 immediately apply, despite the fact that those beliefs happen to be incorrect in this setting.

(Note however that regret, which is based on the true distribution of studies, will differ in this

setting compared to the setting in Tetenov (2012)).
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The no-data rule is identical to the one proved in Kitagawa and Vu (2023).

B. Ambiguous Impact of Corrections on Bias

Proposition 1 shows that bias increases with standard error corrections when they are suffi-

ciently large. This appendix presents examples where bias can decrease when standard error

corrections are small. This is formalized in the following lemma:

Lemma B.1 (Ambiguous Impact on Bias). Under Assumptions 1, 2, and 3, standard error

corrections have an ambiguous impact on the individual signs for the change in internal-validity

bias, study-selection bias and total bias. That is, there exist distinct combinations of (µβ,σ, γ, r)

such that their individual signs can be positive, negative, or zero.

Proof. The proof consists of presenting numerical examples and contains two steps. In the

first, I show ambiguity in the sign of the change in internal-validity bias and total bias. In the

second, I do the same for study-selection bias.

(1) Internal-Validity Bias and Total Bias

Suppose that βj follows a degenerate distribution with Pr[βj = β] = 1 for some β > 0. This

implies that the change in internal-validity bias following standard error corrections will be

equal to the change in total bias (and the change in estimated treatment effects):

E1[β̂j − β|Dj = 1]−Er[β̂j − β|Dj = 1]︸ ︷︷ ︸
∆Internal-validity bias

= E1[β̂j |Dj = 1]−Er[β̂j |Dj = 1]︸ ︷︷ ︸
∆Total bias=∆Estimated treatment effects

(28)

We can use the expression for Bias(β, γ, r) from Lemma A.1 to show that the sign of equation

(28) from standard error corrections is ambiguous i.e. the sign of Bias(β, γ, 1) − Bias(β, γ, r)

can be positive, negative or zero. Fix (γ, r) = (0.1, 0.75). Then for β = 1.5 and β = 0.25, we

have that

Bias
(
1.5, 0.1, 1

)
− Bias

(
1.5, 0.1, 0.75

)
= 0.8244− 0.6307 = 0.1937 > 0

Bias
(
0.25, 0.1, 1

)
− Bias

(
0.25, 0.1, 0.75

)
= 0.34319− 0.3722 = −0.0290 < 0

Finally, by the intermediate value theorem, there exists some β′ ∈ (0.25, 1.5) such that

Bias(β′, 0.1, 1)− Bias(β′, 0.1, 0.75) = 0.



58

(2) Study Selection Bias

Consider a two-point distribution for βj where Pr[βj = β] = p∗1 ·1{β = β1}+(1−p∗1)·1{β = β2}
for 0 ≤ β1 < β2 and p∗1 ∈ (0, 1). Then by Bayes’ Rule we have

TrueTE(β1, β2, p
∗
1, γ, r) ≡ Er[βj|Dj = 1] =

p∗1β1C(β1, γ, r) + (1− p∗1)β2C(β2, γ, r)

p∗1C(β1, γ, r) + (1− p∗1)C(β2, γ, r)

where C(β, γ, r) ≡
∫
z′
p
(
β+z′

r

)
ϕ(z′)dz′ is the probability of publication conditional on β.

Now suppose β1 = 0 and p∗1 = 0.5. Then the change in true treatment effects is given by

TrueTE(0, β2, 0.5, γ, 1)− TrueTE(0, β2, 0.5, γ, r)

= β2

(
C(β2, γ, 1)

C(0, γ, 1) + C(β2, γ, 1)
− C(β2, γ, r)

C(0, γ, r) + C(β2, γ, r)

)
(29)

which is strictly positive if and only if

C(β2, γ, 1)

C(0, γ, 1)
>

C(β2, γ, r)

C(0, γ, r)

That is, true treatment effects will increase if the probability of publication conditional on

β2 > 0 relative to the probability of publication conditional on β1 = 0 is higher in the corrected

regime relative to the uncorrected regime.

As in the previous section, fix (γ, r) = (0.1, 0.75). We can use the expression in equation (29)

to calculate the change in true treatment effects from standard error corrections for different

values of β2. For β2 = 1.5 and β2 = 0.75, we have that

TrueTE(0, 1.5, 0.5, 0.1, 1)− TrueTE(0, 1.5, 0.5, 0.1, 0.75) = 0.0261 > 0

TrueTE(0, 0.75, 0.5, 0.1, 1)− TrueTE(0, 0.75, 0.5, 0.1, 0.75) = −0.0016 < 0

Finally, by the intermediate value theorem, there exists some β′ ∈ (0.75, 1.5) such that

TrueTE(0, β′, 0.5, 0.1, 1)− TrueTE(0, β′, 0.5, 0.1, 0.75) = 0.

Practically, Lemma B.1 implies that the impact of standard error corrections on either bias,

estimated treatment effects, or true treatment effects is fundamentally an empirical question. In

particular, to learn how bias has changed in any given setting, it is necessary to have knowledge

about the underlying parameters (µβ,σ, γ, r).
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Recall that the main text provides an example where internal-validity bias decreases with

corrections. This example relies on the distribution of published true effects changing and uses

the fact that studies with very large true effects have low bias (Figure B1). By contrast, Propo-

sition B.1 shows that bias can decrease with a degenerate, and hence unchanged, distribution

of true effects.

For intuition, consider the example in Lemma B.1 which examines bias in the case of an

empirical literature examining a single question of interest with a fixed true effect. With r = 3
4
,

clustering increases the effective significance threshold from 1.96× 3
4
≈ 1.5 to approximately 2.

With selective publication (γ = 1
10
), the clustered regime will therefore censor a large share of

studies between 1.5 and 2. How this impacts bias depends on whether censoring these studies

tends to increase or decrease the expected estimated treatment effect in the uncorrected regime.

In the examples given in the proof, we have that E[β̂j|Dj = 1, β = 1.5; γ = 1
10
, r = 3

4
] = 2.13

and E[β̂j|Dj = 1, β = 1
4
; γ = 1

10
, r = 3

4
] = 0.62, where βj is degenerate in both cases. In the

first case, moving to the clustered regime censors studies with effect sizes between 1.5 and 2,

which are smaller than the mean in the unclustered regime of 2.13; this leads to an increase

in estimated treatment effects and thus bias since βj is degenerate. In the second case, the

opposite occurs.

Figure B1. Plot of E1[β̂j − β|Dj = 1, β] for different values of β, assuming γ = 0.1.



60

C. Details on Data and Descriptive Statistics

This appendix provides further details on the data and descriptive statistics in Section 3.

C.1. JEL Codes

Figure C1 shows the distribution of JEL codes. Note that studies typically include multiple

JEL codes and Figure C1 plots the distribution at the JEL code level rather than at a study-

level e.g. with weighted JEL codes. The results show that clustered articles are less likely to

be Health, Education & Welfare (I); and Labor (J), although the difference is not statistically

significant. Moreover, clustered studies are more likely to have at least one JEL code that is

outside the three dominant categories of Public Economics (H); Health, Education & Welfare

(I); and Labor (J).

Figure C1. Distribution of JEL codes. The most common JEL codes are: Public Economics (H); Health,
Education & Welfare (I); and Labor (J)
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C.2. Times-Series Descriptive Statistics

Figure C2 shows, by clustering regime, the five-year centered moving average of estimated

treatment effects, reported standard errors, and absolute t-ratios. A five-year averaging window

is used because there are relatively few clustered studies in earlier years of the decade and

relatively few unclustered studies in later years of the decade. Hence, these trends are relatively

imprecisely measured and should be treated with appropriate caution. As discussed in the main

text, effect sizes are considerably larger for studies reporting clustered standard errors, and this

gap appears to be relatively stable across time. The middle panel shows that similar is true

for reported standard errors. The last panel shows the average absolute t-ratio by regime.

The magnitude in both regimes is relatively similar and above the 1.96 critical threshold for

significance at the 5% level.

Figure C2. Five-Year Centered Moving Average of the Magnitude of Estimated Treatment Effects, Reported
Standard Errors, and the Absolute t-Ratio

C.3. Outliers

As discussed in the main text, for dependent variables in non-percentage units, effects are

recorded relative to the sample mean of the treatment group prior to the treatment. In four

cases, this leads to very large percent effects due to low base effects. For example, one study

estimates that an exogenous reallocation of police away from sporting events reduced the av-

erage number of violent incidents from 1.03 to 3.41, representing a more than 300% effect.

Three other studies whose effect sizes were above 100% were removed for similar reasons – two
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clustered studies and two unclustered studies.

Figure C3 shows the density of normalized effect sizes in the full sample which includes

outliers (top panel) and the sample with the outliers removed (bottom panel). The main mass

of the distribution lies below 100%.

Figure C3. Density of Normalized Effect Sizes With and Without Outliers, for Clustered and Unclustered
Studies
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D. Comparative Descriptive Statistics from 1990–1999

This appendix analyzes unclustered studies from the 1990–1999. The main motivation is to

examine the extent to which strategic clustering over 2000–2009 (i.e. the time period in the

main analysis) might be driving the observed effect size gap between clustered and unclustered

studies in between 2000 and 2009. Analyzing DiD articles published between 1990 and 1999 is

useful because the norm over this period was to report unclustered standard errors (Bertrand

et al., 2004). Thus, DiD studies in this period are unlikely to be subject to strategic clustering,

providing a useful comparison group.

If strategic clustering was absent in the 1990–1999 period, but present during the 2000–2009

period, then, all else equal, we might expect effect sizes to be smaller in the 2000–2009 period.

This is because strategic clustering would increase the fraction of published studies in the

unclustered regime with relatively small effect sizes that would be ‘just significant’ without

clustering, but insignificant with it.

Table D1 compares effect sizes between unclustered studies published between 2000–2009

to those published between 1990–1999. The average effect size between 2000-2009 is 11.2%.

In the earlier 1990-1999 period, effect sizes were almost identical, at 11.5%. This difference is

statistically indistinguishable from zero, although one should be cautious given the relatively

small sample size. Adding controls for observable study characteristics implies that average

effect sizes are slightly larger in the 2000-2009 period, which is the opposite of what we would

expect if there were strategic clustering present, although the point estimate is small and

statistically insignificant. Overall, this provides suggestive evidence that the large increase in

effect sizes observed over the 2000–2009 period is not driven by strategic clustering of the form

discussed here.

There are two reasons for the relatively small sample size. First, the string-search algorithm

I use from Currie et al. (2020) which I use is based on searching articles for variations of the term

‘difference-in-differences’ (e.g. DiD, diff-and-diff etc.) Use of this specific terminology was less

consistent in the 1990’s when DiD designs were beginning to be used more frequently in applied

work. A second reason for the small sample is that studies must meet the inclusion criteria

described in Section 3 which ensure comparability of effect sizes (i.e. estimated treatment

effects in percent units from a binary treatment) across studies.
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Table D1 – Effect Sizes of Unclustered Studies: 1990’s vs. 2000’s

1(1990− 1999) 0.313 -1.652
(4.703) (4.138)

Mean in 2000–2009 11.23 11.23
Observations 35 35
Adjusted-R2 -0.03 0.152
Study controls X

Note: The sample is unclustered studies over 1990-2009. Results are from OLS regressions of the magnitude
estimated treatment effects on an indicator for whether the study was published between 1990–1999. Study
controls include a quadratic on the log of the number of observations, an indicator for policy evaluations, and
a three-way interaction between JEL topics H (Public Economics), I (Health, Education, and Welfare), and
J (Labor and Demographic Economics). These JEL topics are the most common codes for DiD studies. The
dependent variable is in percent units or, for studies where the dependent variable is measured in logs, in log
point units. The estimated coefficients are in percentage point units. Robust standard errors are in parentheses.

E. Robust Estimation for Strategic Clustering

The presence of strategic clustering could affect the consistent estimation of parameters of the

latent distribution, which could, in turn, affect the main results on the impact of clustering

on bias and coverage. This appendix proposes an estimation approach which is robust to the

simple form of strategic clustering where researchers choose to cluster only when it does not

change the statistical significance of their findings.

To begin, I extend the model in the main text to include strategic clustering. Then I present

the robust estimation strategy and implement it for the DiD sample. Finally, I compare results

from the main text with those using the alternative robust estimation approach. I find very

similar results across both approaches, which provides evidence that the form of strategic

clustering discussed here is not driving the main conclusions.

E.1. Model of Strategic Clustering

The model extends the model in Section 2 to incorporate strategic clustering:

1. Draw a latent study: (βj, σj) ∼ µβ,σ

2. Estimate the treatment effect: β̂j|βj, σj ∼ N(βj, σ
2
j )

3. Report standard errors: This follows a two-stage process. In the first stage, researchers

either endogenously cluster with probability βc,1 ∈ [0, 1] or otherwise exogeneously cluster

with probability 1 − βc,1. In the second stage, researchers choose which standard errors

to report depending on the outcome of the first stage.
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(a) Endogenous clustering:

σ̃j =

r · σj if 1.96(r · σj) ≤ |β̂j| ≤ 1.96σj

σj otherwise

(b) Exogeneous clustering:

σ̃j =

r · σj with probability 1− βc,2

σj with probability βc,2

where r ∈ (0, 1) and βc,2 ∈ (0, 1).

4. Publication selection:

Pr(Dj = 1|β̂j, σ̃j) =

γ if |β̂j|/σ̃j ≥ 1.96

1 otherwise
(30)

The extension from the baseline model in Section 2 is in the third step. There exists some

probability βc,1 that researchers will choose whether or not to cluster strategically. Specifically,

researchers may strategically choose not to cluster when doing so allows them to obtain sta-

tistical significance. Otherwise, they always cluster. When βc,1 = 0 clustering is completely

exogenous and the model collapses to the baseline model.

E.2. Robust Estimation

The follow result provides the basis for an estimation approach which is robust to the form of

strategic clustering outlined in the model above:

Lemma E.1. The distribution of statistically significant, published studies in the clustered

regime, β̂j, σj, βj|Dj = 1, Cj = 1, |β̂j|/σj ≥ 1.96, does not depend on (βc,1, βc,2).

Proof. I will show that the density of published clustered studies in the endogenous regime

is identical to the density of published clustered studies in the exogenous regime once we set

γ = 0 in both regimes (this is equivalent to conditioning on statistical significance). Since the

overall density of published clustered studies is simply a mixture of these the endogenous and

exogenous regimes, it follows that the overall density must equal to the density in the exogenous

regime with γ = 0, which does not depend on (βc,1, βc,2).

First, consider the endogenous regime, which we denote with E = 1. By Bayes Rule we

have that the density of published clustered studies is given by
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fβ̂,σ,β|D(β̂, σ, β|Dj = 1; γ, 1, E = 1) =
Pr1[Dj = 1|β̂, σ;E = 1] 1

σ
ϕ
(
β̂−β
σ

)
Pr1[Dj = 1;E = 1]

∝ 1{|β̂| ≤ 1.96rσ} · γ 1
σ
ϕ

(
β̂ − β

σ

)
+ 1{|β̂| > 1.96σ} · 1

σ
ϕ

(
β̂ − β

σ

)
Note that all studies with |x| ∈ (1.96rσ, 1.96σ) are strategically unclustered in the endoge-

nous regime, and hence the density over this region for clustered studies is zero.

Next, consider the density of published clustered studies in the exogenous regime:

fβ̂,Σ,β|D,Σ̃(β̂, σ, β|Dj = 1; γ, 1, E = 0) =
Pr1[Dj = 1|β̂, σ;E = 0] 1

σ
ϕ
(
β̂−β
σ

)
Pr1[Dj = 1;E = 0]

∝ 1{|β̂| ≤ 1.96σ} · γ 1
σ
ϕ

(
β̂ − β

σ

)
+ 1{|β̂| > 1.96σ} · 1

σ
ϕ

(
β̂ − β

σ

)
When γ = 0, the densities in these two regimes are clearly identical.

For intuition, consider the regime where standard errors are chosen strategically. Strate-

gically choosing not to cluster occurs whenever a study is significant without clustering but

insignificant with clustering i.e. |β̂| ∈ (1.96rσ, 1.96σ). But studies with |β̂| ∈ (1.96rσ, 1.96σ)

would never be published in a clustered regime with publication regime γ = 0, because they are

statistically insignificant with clustered standard errors, irrespective of whether there is strate-

gic clustering or not. Thus, strategic clustering has no impact on the distribution of studies

once we condition on statistical significance, which is equivalent to setting γ = 0.

This result provides the basis for an approach to obtaining unbiased estimates of the latent

distribution in the presence strategic clustering. We do this by estimating the model with the

selected sample of statistically significant clustered studies, β̂j, σj|Dj = 1, Cj = 1, |β̂j|/σj ≥
1.96, and setting γ = 0 such that we only estimate µβ,σ. Normally, the selection function p(·)
represents selective publication, but now it reflects the joint selection of the publication process

and the econometrician who chooses which results to use for estimation. Since we knowingly

condition estimation on significant results, we know that γ = 0 and do not need to estimate it.

In other words, once we condition on the selection of the econometrician, conditioning again by

selective publication has no impact since it is also based on statistical significance. Thus, we

can recover the latent distribution irrespective of whether or not there is strategic clustering.

E.3. Robust Maximum Likelihood Estimation

Under the null hypothesis of no strategic clustering, the estimated latent distribution using the

full sample, β̂j, σj|Dj = 1, Cj = 1, should be similar to the unbiased estimate with the significant
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sample, β̂j, σj|Dj = 1, Cj = 1, |β̂j|/σj ≥ 1.96. However, if there is strategic clustering, then

then the density of the data is different, the model misspecified, and the estimates for the

latent distribution should also be different.36 Thus if the estimates of the latent distribution

are sufficiently different, then we can reject the null of no strategic clustering. Otherwise, we

do not reject it.

I apply this test to the DiD sample of clustered studies. Results are in Table E1, with the

robust model in the first row (n = 54), and the standard model from the main text in the

second row (n = 62). Note that in the robust model, the selection parameter γ is not estimated

but set to zero. Estimates for the latent distribution of studies are relatively similar for both

approaches. For each parameter, the 95% confidence interval of the estimated parameters in

the restricted model contains the standard model parameter estimate, and vice versa. This

implies that we cannot reject the null hypothesis of endogenous clustering.

Table E1 – Robust Maximum Likelihood Estimates

Latent true effects βj Latent standard errors σj Selection
κβ λβ κσ λσ γ

Restricted (Robust) 0.167 16.442 1.508 6.212 0.000
(0.059) (7.234) (0.193) (1.405) –

Standard (Main Text) 0.151 18.202 1.318 7.292 0.023
(0.045) (6.417) (0.171) (1.723) (0.009)

Notes: Estimation sample is clustered DiD studies over 2000–2009. The number of observations is 66 in the
standard model and 60 in the restricted model which only uses statistically significant estimates at the 5% level.
Robust standard errors are in parentheses. Latent true treatment effects and standard errors are assumed to
follow a gamma distribution with shape and scale parameters (κ, λ). The coefficient γ measures the publication
probability of insignificant results at the 5% level relative to significant results.

E.4. Bias and Coverage Results with Robust Model

Ultimately, we are interested in how differences in parameter estimates from the robust approach

could affect our final conclusions about the impact of clustering on bias and coverage. One

concern with the statistical test above is that limited power prevents us from rejecting the

null hypothesis despite differences in parameter estimates that have a meaningful impact on

the main results examining the impact of clustering on bias and coverage in Section 4. To

alleviate these concerns, I perform a robustness exercise where I reproduce the main analysis

using parameter estimates from the robust model. This allows us to test the sensitivity of the

main results to the (statistically insignificant) differences in parameter estimates in Table E1.

36Note that the probability of publishing null results γ must be non-zero, since they appear in the sample.
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To estimate the parameters of the latent distribution, the robust model sets γ = 0 and

therefore does not estimate it. Thus, it is necessary to choose the value of γ to calculate

the impact of clustering. For robustness, I choose three different values. The first is setting

γ to the same value estimated in the standard model for DiD studies (A). The second is to

set γ = 0.037, which is the value estimated by Andrews and Kasy (2019) for replications in

experimental economics (B).37 Finally, to test sensitivity of the results, I set it to γ = 0.1, a

relatively large value which is 4.35 times larger than the value estimated in DiD studies (C).

Table E2 presents the results. Overall, the conclusion from the ‘standard model’ that

clustering increases coverage by a large amount at the expense of increased internal-validity

bias is maintained across all calibrations of the robust model. This suggests that the main

results are unlikely to be driven strategic clustering of the form presented in the model above.

37This is based on the meta-study estimation approach which is also used in this article.
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Table E2 – Results for Model Robust to Strategic Clustering

Unclustered (r̂ = 0.51) Clustered (r = 1) Change

Standard Model (γ̂ = 0.023)

Coverage 0.36 0.72 0.36

Total Bias (Er[β̂j |Dj = 1]−Er[βj ]) 4.34 (100%) 9.51 (100%) 5.17 (100%)

Internal-Validity Bias (Er[β̂j − βj |Dj = 1]) 1.47 (33.7%) 2.34 (24.6%) 0.88 (17.0%)
Study-Selection Bias (Er[βj |Dj = 1]−Er[βj ]) 2.88 (66.3%) 7.17 (75.4%) 4.29 (83.0%)

Robust Model
A DiD Studies (γ = 0.023)

Coverage 0.36 0.71 0.35

Total Bias 4.25 (100%) 9.37 (100%) 5.12 (100%)
Internal-Validity Bias 1.51 (35.6%) 2.47 (26.4%) 0.96 (18.7%)
Study-Selection Bias 2.73 (64.4%) 6.90 (73.6%) 4.16 (81.3%)

B Economics Experiments (γ = 0.037)

Coverage 0.37 0.74 0.37

Total Bias 4.07 (100%) 8.53 (100%) 4.46 (100%)
Internal-Validity Bias 1.45 (35.6%) 2.25 (26.4%) 0.80 (18.0%)
Study-Selection Bias 2.62 (64.4%) 6.28 (73.6%) 3.66 (82.0%)

C One-in-Ten Censored (γ = 0.1)

Coverage 0.44 0.80 0.36

Total Bias 3.41 (100%) 6.03 (100%) 2.62 (100%)
Internal-Validity Bias 1.21 (35.6%) 1.59 (26.4%) 0.38 (14.5%)
Study-Selection Bias 2.20 (64.4%) 4.44 (73.6%) 2.24 (85.5%)

Notes: The ‘standard model’ results are reprinted from the main text. The remaining results under ‘Robust
Model’ are based on the procedure outlined in Appendix E, for different values of γ, which measures the level
of publication bias against insignificant results at the 5% level. Figures are calculated by simulating published
studies under unclustered and clustered regimes.
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F. Impact of Clustering for Different Sized Corrections

Figure F1. Results on the Impact of Clustering for Different Values of r

Notes: Change in coverage, total bias (and estimated treatment effects), study-selection bias, and internal-
validity bias for the estimated model parameters in Table 3 as a function of downward bias in unclustered
standard errors r. The vertical dashed line at r̂ = 0.59 represents the calibrated value using the method of
simulated moments. The vertical dashed line at r̂ = 0.76 represents the mean of the empirical distribution of r
from 2015–2018 DiD studies.
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G. Impact of Clustering on Bias and Coverage, Using 2015–2018 Empirical

Distribution of r

Table G1 – Impact of Clustering Based on 2015–2018 Empirical Distribution of r

Unclustered Clustered (r = 1) Change

Random draws of r

Coverage 0.37 0.72 0.35

Total Bias 4.56 (100%) 9.51 (100%) 4.95 (100%)
Internal-Validity Bias 1.34 (29.5%) 2.34 (24.6%) 1.00 (20.2%)
Study-Selection Bias 3.22 (70.5%) 7.17 (75.4%) 3.95 (79.8%)

Mean: r̂ = 0.76
Coverage 0.50 0.72 0.22

Total Bias 6.38 (100%) 9.51 (100%) 3.13 (100%)
Internal-Validity Bias 1.93 (30.2%) 2.35 (24.7%) 0.42 (13.4%)
Study-Selection Bias 4.45 (69.8%) 7.17 (75.3%) 2.71 (86.6%)

Notes: These figures are based on the parameter estimates of the empirical model in Table 3. Figures are
calculated by simulating published studies under unclustered and clustered regimes. In the unclustered regime,
the degree of bias in unclustered studies is based on the empirical distribution of r from 2015–2018 studies.
Panel A shows results based on randomly drawing different values of r from the empirical distribution for
unclustered studies. Panel B assumes that all unclustered studies are downward biased by a constant factor
equal to the mean of the empirical distribution (r̂ = 0.76).


